|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
```python |
|
import soundfile as sf |
|
import torch |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import argparse |
|
def parse_transcription(wav_file): |
|
# load pretrained model |
|
processor = Wav2Vec2Processor.from_pretrained("addy88/hindi-wav2vec2-stt") |
|
model = Wav2Vec2ForCTC.from_pretrained("addy88/hindi-wav2vec2-stt") |
|
# load audio |
|
audio_input, sample_rate = sf.read(wav_file) |
|
# pad input values and return pt tensor |
|
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values |
|
# INFERENCE |
|
# retrieve logits & take argmax |
|
logits = model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
# transcribe |
|
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) |
|
print(transcription) |
|
``` |