leaderboard-pr-bot commited on
Commit
1d763c1
·
verified ·
1 Parent(s): 6682e3f

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +117 -1
README.md CHANGED
@@ -2,9 +2,125 @@
2
  license: other
3
  license_name: yi-license
4
  license_link: LICENSE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
  Anti-refusal anti-instruct capabilities of this model are much stronger than yi-34b-200k-rawrr-dpo-1.
7
  This model is Yi-34B-200K fine-tuned using DPO on rawrr_v1 dataset using QLoRA at ctx 500, lora_r 16 and lora_alpha 16. I then applied the adapter to base model. This model is akin to raw LLaMa 65B, it's not meant to follow instructions but instead should be useful as base for further fine-tuning.
8
 
9
  Rawrr_v1 dataset made it so that this model issue less refusals, especially for benign topics, and is moreso completion focused rather than instruct focused. Base yi-34B-200k suffers from contamination on instruct and refusal datasets, i am attempting to fix that by training base models with DPO on rawrr dataset, making them more raw.
10
- You should be able to achieve good 0ctx uncensoredness and quite good lack of gptslop if you finetune this model for instruct.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: other
3
  license_name: yi-license
4
  license_link: LICENSE
5
+ model-index:
6
+ - name: yi-34b-200k-rawrr-dpo-2
7
+ results:
8
+ - task:
9
+ type: text-generation
10
+ name: Text Generation
11
+ dataset:
12
+ name: AI2 Reasoning Challenge (25-Shot)
13
+ type: ai2_arc
14
+ config: ARC-Challenge
15
+ split: test
16
+ args:
17
+ num_few_shot: 25
18
+ metrics:
19
+ - type: acc_norm
20
+ value: 64.68
21
+ name: normalized accuracy
22
+ source:
23
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-2
24
+ name: Open LLM Leaderboard
25
+ - task:
26
+ type: text-generation
27
+ name: Text Generation
28
+ dataset:
29
+ name: HellaSwag (10-Shot)
30
+ type: hellaswag
31
+ split: validation
32
+ args:
33
+ num_few_shot: 10
34
+ metrics:
35
+ - type: acc_norm
36
+ value: 84.74
37
+ name: normalized accuracy
38
+ source:
39
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-2
40
+ name: Open LLM Leaderboard
41
+ - task:
42
+ type: text-generation
43
+ name: Text Generation
44
+ dataset:
45
+ name: MMLU (5-Shot)
46
+ type: cais/mmlu
47
+ config: all
48
+ split: test
49
+ args:
50
+ num_few_shot: 5
51
+ metrics:
52
+ - type: acc
53
+ value: 75.96
54
+ name: accuracy
55
+ source:
56
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-2
57
+ name: Open LLM Leaderboard
58
+ - task:
59
+ type: text-generation
60
+ name: Text Generation
61
+ dataset:
62
+ name: TruthfulQA (0-shot)
63
+ type: truthful_qa
64
+ config: multiple_choice
65
+ split: validation
66
+ args:
67
+ num_few_shot: 0
68
+ metrics:
69
+ - type: mc2
70
+ value: 46.15
71
+ source:
72
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-2
73
+ name: Open LLM Leaderboard
74
+ - task:
75
+ type: text-generation
76
+ name: Text Generation
77
+ dataset:
78
+ name: Winogrande (5-shot)
79
+ type: winogrande
80
+ config: winogrande_xl
81
+ split: validation
82
+ args:
83
+ num_few_shot: 5
84
+ metrics:
85
+ - type: acc
86
+ value: 83.19
87
+ name: accuracy
88
+ source:
89
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-2
90
+ name: Open LLM Leaderboard
91
+ - task:
92
+ type: text-generation
93
+ name: Text Generation
94
+ dataset:
95
+ name: GSM8k (5-shot)
96
+ type: gsm8k
97
+ config: main
98
+ split: test
99
+ args:
100
+ num_few_shot: 5
101
+ metrics:
102
+ - type: acc
103
+ value: 61.79
104
+ name: accuracy
105
+ source:
106
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-2
107
+ name: Open LLM Leaderboard
108
  ---
109
  Anti-refusal anti-instruct capabilities of this model are much stronger than yi-34b-200k-rawrr-dpo-1.
110
  This model is Yi-34B-200K fine-tuned using DPO on rawrr_v1 dataset using QLoRA at ctx 500, lora_r 16 and lora_alpha 16. I then applied the adapter to base model. This model is akin to raw LLaMa 65B, it's not meant to follow instructions but instead should be useful as base for further fine-tuning.
111
 
112
  Rawrr_v1 dataset made it so that this model issue less refusals, especially for benign topics, and is moreso completion focused rather than instruct focused. Base yi-34B-200k suffers from contamination on instruct and refusal datasets, i am attempting to fix that by training base models with DPO on rawrr dataset, making them more raw.
113
+ You should be able to achieve good 0ctx uncensoredness and quite good lack of gptslop if you finetune this model for instruct.
114
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
115
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_adamo1139__yi-34b-200k-rawrr-dpo-2)
116
+
117
+ | Metric |Value|
118
+ |---------------------------------|----:|
119
+ |Avg. |69.42|
120
+ |AI2 Reasoning Challenge (25-Shot)|64.68|
121
+ |HellaSwag (10-Shot) |84.74|
122
+ |MMLU (5-Shot) |75.96|
123
+ |TruthfulQA (0-shot) |46.15|
124
+ |Winogrande (5-shot) |83.19|
125
+ |GSM8k (5-shot) |61.79|
126
+