|
--- |
|
license: bigscience-openrail-m |
|
--- |
|
|
|
|
|
how to use |
|
|
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import textwrap, time |
|
|
|
MAX_NEW_TOKENS = 300 |
|
model_name = "acul3/bloomz-3b-Instruction" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
device_map='auto', |
|
load_in_8bit= True |
|
) |
|
|
|
|
|
def generate_text(text): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
text = "User: " + text + "\n\Asisten: " |
|
input_ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda") |
|
generated_ids = model.generate(input_ids, max_length=MAX_NEW_TOKENS, pad_token_id=tokenizer.eos_token_id, do_sample=True, top_p=0.95, temperature=0.5, penalty_alpha=0.6, top_k=4, repetition_penalty=1.03, num_return_sequences=1) |
|
result = textwrap.wrap(tokenizer.decode(generated_ids[0], skip_special_tokens=True), width=128) |
|
result[0] = result[0].split("Asisten:")[-1] |
|
return "\n".join(result) |
|
|
|
print(generate_text("cara merebus telur")) |
|
``` |