acpotts commited on
Commit
2d373f7
1 Parent(s): b1bd410

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:800
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What is the importance of having a human fallback system in automated
46
+ systems, especially for the American public?
47
+ sentences:
48
+ - "ing a system from use. Automated systems should not be designed \nwith an intent\
49
+ \ or reasonably foreseeable possibility of endangering \nyour safety or the safety\
50
+ \ of your community. They should be designed \nto proactively protect you from\
51
+ \ harms stemming from unintended, \nyet foreseeable, uses or impacts of automated\
52
+ \ systems. You should be \nprotected from inappropriate or irrelevant data use\
53
+ \ in the design, de­\nvelopment, and deployment of automated systems, and from\
54
+ \ the \ncompounded harm of its reuse. Independent evaluation and report­\ning\
55
+ \ that confirms that the system is safe and effective, including re­\nporting\
56
+ \ of steps taken to mitigate potential harms, should be per­\nformed and the results\
57
+ \ made public whenever possible. \n15"
58
+ - "with disabilities. \nIn addition to being able to opt out and use a human alternative,\
59
+ \ the American public deserves a human fallback \nsystem in the event that an\
60
+ \ automated system fails or causes harm. No matter how rigorously an automated\
61
+ \ system is \ntested, there will always be situations for which the system fails.\
62
+ \ The American public deserves protection via human \nreview against these outlying\
63
+ \ or unexpected scenarios. In the case of time-critical systems, the public should\
64
+ \ not have \nto wait—immediate human consideration and fallback should be available.\
65
+ \ In many time-critical systems, such a \nremedy is already immediately available,\
66
+ \ such as a building manager who can open a door in the case an automated \ncard\
67
+ \ access system fails."
68
+ - "information used to build or validate the risk assessment shall be open to public\
69
+ \ inspection,\" and that assertions \nof trade secrets cannot be used \"to quash\
70
+ \ discovery in a criminal matter by a party to a criminal case.\" \n22"
71
+ - source_sentence: What type of information is required to be open to public inspection
72
+ in relation to risk assessment?
73
+ sentences:
74
+ - "HOW THESE PRINCIPLES CAN MOVE INTO PRACTICE\nReal-life examples of how these\
75
+ \ principles can become reality, through laws, policies, and practical \ntechnical\
76
+ \ and sociotechnical approaches to protecting rights, opportunities, and access.\
77
+ \ \nThe federal government is working to combat discrimination in mortgage lending.\
78
+ \ The Depart­\nment of Justice has launched a nationwide initiative to combat\
79
+ \ redlining, which includes reviewing how \nlenders who may be avoiding serving\
80
+ \ communities of color are conducting targeted marketing and advertising.51 \n\
81
+ This initiative will draw upon strong partnerships across federal agencies, including\
82
+ \ the Consumer Financial"
83
+ - "reuse \nRelevant and high-quality data. Data used as part of any automated system’s\
84
+ \ creation, evaluation, or \ndeployment should be relevant, of high quality, and\
85
+ \ tailored to the task at hand. Relevancy should be \nestablished based on research-backed\
86
+ \ demonstration of the causal influence of the data to the specific use case \n\
87
+ or justified more generally based on a reasonable expectation of usefulness in\
88
+ \ the domain and/or for the \nsystem design or ongoing development. Relevance\
89
+ \ of data should not be established solely by appealing to \nits historical connection\
90
+ \ to the outcome. High quality and tailored data should be representative of the\
91
+ \ task at"
92
+ - "information used to build or validate the risk assessment shall be open to public\
93
+ \ inspection,\" and that assertions \nof trade secrets cannot be used \"to quash\
94
+ \ discovery in a criminal matter by a party to a criminal case.\" \n22"
95
+ - source_sentence: Who is the Senior Policy Advisor for Data and Democracy at the
96
+ White House Office of Science and Technology Policy?
97
+ sentences:
98
+ - "products, advanced platforms and services, “Internet of Things” (IoT) devices,\
99
+ \ and smart city products and \nservices. \nWelcome:\n•\nRashida Richardson, Senior\
100
+ \ Policy Advisor for Data and Democracy, White House Office of Science and\nTechnology\
101
+ \ Policy\n•\nKaren Kornbluh, Senior Fellow and Director of the Digital Innovation\
102
+ \ and Democracy Initiative, German\nMarshall Fund\nModerator: \nDevin E. Willis,\
103
+ \ Attorney, Division of Privacy and Identity Protection, Bureau of Consumer Protection,\
104
+ \ Federal \nTrade Commission \nPanelists: \n•\nTamika L. Butler, Principal, Tamika\
105
+ \ L. Butler Consulting\n•\nJennifer Clark, Professor and Head of City and Regional\
106
+ \ Planning, Knowlton School of Engineering, Ohio\nState University\n•"
107
+ - 'ENDNOTES
108
+
109
+ 35. Carrie Johnson. Flaws plague a tool meant to help low-risk federal prisoners
110
+ win early release. NPR.
111
+
112
+ Jan. 26, 2022. https://www.npr.org/2022/01/26/1075509175/flaws-plague-a-tool-meant-to-help-low­
113
+
114
+ risk-federal-prisoners-win-early-release.; Carrie Johnson. Justice Department
115
+ works to curb racial bias
116
+
117
+ in deciding who''s released from prison. NPR. Apr. 19, 2022. https://
118
+
119
+ www.npr.org/2022/04/19/1093538706/justice-department-works-to-curb-racial-bias-in-deciding­
120
+
121
+ whos-released-from-pris; National Institute of Justice. 2021 Review and Revalidation
122
+ of the First Step Act
123
+
124
+ Risk Assessment Tool. National Institute of Justice NCJ 303859. Dec., 2021. https://www.ojp.gov/
125
+
126
+ pdffiles1/nij/303859.pdf'
127
+ - 'https://themarkup.org/machine-learning/2022/01/11/this-private-equity-firm-is-amassing-companies­
128
+
129
+ that-collect-data-on-americas-children
130
+
131
+ 77. Reed Albergotti. Every employee who leaves Apple becomes an ‘associate’: In
132
+ job databases used by
133
+
134
+ employers to verify resume information, every former Apple employee’s title gets
135
+ erased and replaced with
136
+
137
+ a generic title. The Washington Post. Feb. 10, 2022.
138
+
139
+ https://www.washingtonpost.com/technology/2022/02/10/apple-associate/
140
+
141
+ 78. National Institute of Standards and Technology. Privacy Framework Perspectives
142
+ and Success
143
+
144
+ Stories. Accessed May 2, 2022.
145
+
146
+ https://www.nist.gov/privacy-framework/getting-started-0/perspectives-and-success-stories'
147
+ - source_sentence: What actions has the Consumer Financial Protection Bureau taken
148
+ regarding black-box credit models?
149
+ sentences:
150
+ - 'under-ecoa-fcra/
151
+
152
+ 91. Federal Trade Commission. Using Consumer Reports for Credit Decisions: What
153
+ to Know About
154
+
155
+ Adverse Action and Risk-Based Pricing Notices. Accessed May 2, 2022.
156
+
157
+ https://www.ftc.gov/business-guidance/resources/using-consumer-reports-credit-decisions-what­
158
+
159
+ know-about-adverse-action-risk-based-pricing-notices#risk
160
+
161
+ 92. Consumer Financial Protection Bureau. CFPB Acts to Protect the Public from
162
+ Black-Box Credit
163
+
164
+ Models Using Complex Algorithms. May 26, 2022.
165
+
166
+ https://www.consumerfinance.gov/about-us/newsroom/cfpb-acts-to-protect-the-public-from-black­
167
+
168
+ box-credit-models-using-complex-algorithms/
169
+
170
+ 93. Anthony Zaller. California Passes Law Regulating Quotas In Warehouses – What
171
+ Employers Need to'
172
+ - 'https://www.nytimes.com/2020/12/29/technology/facial-recognition-misidentify-jail.html;
173
+ Khari
174
+
175
+ Johnson. How Wrongful Arrests Based on AI Derailed 3 Men''s Lives. Wired. Mar.
176
+ 7, 2022. https://
177
+
178
+ www.wired.com/story/wrongful-arrests-ai-derailed-3-mens-lives/
179
+
180
+ 32. Student Borrower Protection Center. Educational Redlining. Student Borrower
181
+ Protection Center
182
+
183
+ Report. Feb. 2020. https://protectborrowers.org/wp-content/uploads/2020/02/Education-Redlining­
184
+
185
+ Report.pdf
186
+
187
+ 33. Jeffrey Dastin. Amazon scraps secret AI recruiting tool that showed bias against
188
+ women. Reuters. Oct.
189
+
190
+ 10, 2018. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps­
191
+
192
+ secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G'
193
+ - "including automated tenant background screening and facial recognition-based\
194
+ \ controls to enter or exit \nhousing complexes. Employment-related concerning\
195
+ \ uses included discrimination in automated hiring \nscreening and workplace surveillance.\
196
+ \ Various panelists raised the limitations of existing privacy law as a key \n\
197
+ concern, pointing out that students should be able to reinvent themselves and\
198
+ \ require privacy of their student \nrecords and education-related data in order\
199
+ \ to do so. The overarching concerns of surveillance in these \ndomains included\
200
+ \ concerns about the chilling effects of surveillance on student expression, inappropriate"
201
+ - source_sentence: What percentage of racy results did Google cut for searches like
202
+ 'Latina teenager' in March 2022?
203
+ sentences:
204
+ - "they've used drugs, or whether they've expressed interest in LGBTQI+ groups,\
205
+ \ and then use that data to \nforecast student success.76 Parents and education\
206
+ \ experts have expressed concern about collection of such\nsensitive data without\
207
+ \ express parental consent, the lack of transparency in how such data is being\
208
+ \ used, and\nthe potential for resulting discriminatory impacts.\n• Many employers\
209
+ \ transfer employee data to third party job verification services. This information\
210
+ \ is then used\nby potential future employers, banks, or landlords. In one case,\
211
+ \ a former employee alleged that a\ncompany supplied false data about her job\
212
+ \ title which resulted in a job offer being revoked.77\n37"
213
+ - 'Software Discriminates Against Disabled Students. Center for Democracy and Technology.
214
+ Nov. 16, 2020.
215
+
216
+ https://cdt.org/insights/how-automated-test-proctoring-software-discriminates-against-disabled­
217
+
218
+ students/
219
+
220
+ 46. Ziad Obermeyer, et al., Dissecting racial bias in an algorithm used to manage
221
+ the health of
222
+
223
+ populations, 366 Science (2019), https://www.science.org/doi/10.1126/science.aax2342.
224
+
225
+ 66'
226
+ - '2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina­
227
+
228
+ teenager-2022-03-30/
229
+
230
+ 40. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce
231
+ Racism. NYU Press.
232
+
233
+ Feb. 2018. https://nyupress.org/9781479837243/algorithms-of-oppression/
234
+
235
+ 41. Paresh Dave. Google cuts racy results by 30% for searches like ''Latina teenager''.
236
+ Reuters. Mar. 30,
237
+
238
+ 2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina­
239
+
240
+ teenager-2022-03-30/
241
+
242
+ 42. Miranda Bogen. All the Ways Hiring Algorithms Can Introduce Bias. Harvard
243
+ Business Review. May
244
+
245
+ 6, 2019. https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias'
246
+ model-index:
247
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
248
+ results:
249
+ - task:
250
+ type: information-retrieval
251
+ name: Information Retrieval
252
+ dataset:
253
+ name: Unknown
254
+ type: unknown
255
+ metrics:
256
+ - type: cosine_accuracy@1
257
+ value: 0.815
258
+ name: Cosine Accuracy@1
259
+ - type: cosine_accuracy@3
260
+ value: 0.935
261
+ name: Cosine Accuracy@3
262
+ - type: cosine_accuracy@5
263
+ value: 0.95
264
+ name: Cosine Accuracy@5
265
+ - type: cosine_accuracy@10
266
+ value: 0.965
267
+ name: Cosine Accuracy@10
268
+ - type: cosine_precision@1
269
+ value: 0.815
270
+ name: Cosine Precision@1
271
+ - type: cosine_precision@3
272
+ value: 0.31166666666666665
273
+ name: Cosine Precision@3
274
+ - type: cosine_precision@5
275
+ value: 0.19
276
+ name: Cosine Precision@5
277
+ - type: cosine_precision@10
278
+ value: 0.09649999999999999
279
+ name: Cosine Precision@10
280
+ - type: cosine_recall@1
281
+ value: 0.815
282
+ name: Cosine Recall@1
283
+ - type: cosine_recall@3
284
+ value: 0.935
285
+ name: Cosine Recall@3
286
+ - type: cosine_recall@5
287
+ value: 0.95
288
+ name: Cosine Recall@5
289
+ - type: cosine_recall@10
290
+ value: 0.965
291
+ name: Cosine Recall@10
292
+ - type: cosine_ndcg@10
293
+ value: 0.8954135083695783
294
+ name: Cosine Ndcg@10
295
+ - type: cosine_mrr@10
296
+ value: 0.8723333333333333
297
+ name: Cosine Mrr@10
298
+ - type: cosine_map@100
299
+ value: 0.8741632101558571
300
+ name: Cosine Map@100
301
+ - type: dot_accuracy@1
302
+ value: 0.815
303
+ name: Dot Accuracy@1
304
+ - type: dot_accuracy@3
305
+ value: 0.935
306
+ name: Dot Accuracy@3
307
+ - type: dot_accuracy@5
308
+ value: 0.95
309
+ name: Dot Accuracy@5
310
+ - type: dot_accuracy@10
311
+ value: 0.965
312
+ name: Dot Accuracy@10
313
+ - type: dot_precision@1
314
+ value: 0.815
315
+ name: Dot Precision@1
316
+ - type: dot_precision@3
317
+ value: 0.31166666666666665
318
+ name: Dot Precision@3
319
+ - type: dot_precision@5
320
+ value: 0.19
321
+ name: Dot Precision@5
322
+ - type: dot_precision@10
323
+ value: 0.09649999999999999
324
+ name: Dot Precision@10
325
+ - type: dot_recall@1
326
+ value: 0.815
327
+ name: Dot Recall@1
328
+ - type: dot_recall@3
329
+ value: 0.935
330
+ name: Dot Recall@3
331
+ - type: dot_recall@5
332
+ value: 0.95
333
+ name: Dot Recall@5
334
+ - type: dot_recall@10
335
+ value: 0.965
336
+ name: Dot Recall@10
337
+ - type: dot_ndcg@10
338
+ value: 0.8954135083695783
339
+ name: Dot Ndcg@10
340
+ - type: dot_mrr@10
341
+ value: 0.8723333333333333
342
+ name: Dot Mrr@10
343
+ - type: dot_map@100
344
+ value: 0.8741632101558571
345
+ name: Dot Map@100
346
+ ---
347
+
348
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
349
+
350
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
351
+
352
+ ## Model Details
353
+
354
+ ### Model Description
355
+ - **Model Type:** Sentence Transformer
356
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
357
+ - **Maximum Sequence Length:** 512 tokens
358
+ - **Output Dimensionality:** 768 tokens
359
+ - **Similarity Function:** Cosine Similarity
360
+ <!-- - **Training Dataset:** Unknown -->
361
+ <!-- - **Language:** Unknown -->
362
+ <!-- - **License:** Unknown -->
363
+
364
+ ### Model Sources
365
+
366
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
367
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
368
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
369
+
370
+ ### Full Model Architecture
371
+
372
+ ```
373
+ SentenceTransformer(
374
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
375
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
376
+ (2): Normalize()
377
+ )
378
+ ```
379
+
380
+ ## Usage
381
+
382
+ ### Direct Usage (Sentence Transformers)
383
+
384
+ First install the Sentence Transformers library:
385
+
386
+ ```bash
387
+ pip install -U sentence-transformers
388
+ ```
389
+
390
+ Then you can load this model and run inference.
391
+ ```python
392
+ from sentence_transformers import SentenceTransformer
393
+
394
+ # Download from the 🤗 Hub
395
+ model = SentenceTransformer("acpotts/finetuned_arctic")
396
+ # Run inference
397
+ sentences = [
398
+ "What percentage of racy results did Google cut for searches like 'Latina teenager' in March 2022?",
399
+ "2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina\xad\nteenager-2022-03-30/\n40. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.\nFeb. 2018. https://nyupress.org/9781479837243/algorithms-of-oppression/\n41. Paresh Dave. Google cuts racy results by 30% for searches like 'Latina teenager'. Reuters. Mar. 30,\n2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina\xad\nteenager-2022-03-30/\n42. Miranda Bogen. All the Ways Hiring Algorithms Can Introduce Bias. Harvard Business Review. May\n6, 2019. https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias",
400
+ "they've used drugs, or whether they've expressed interest in LGBTQI+ groups, and then use that data to \nforecast student success.76 Parents and education experts have expressed concern about collection of such\nsensitive data without express parental consent, the lack of transparency in how such data is being used, and\nthe potential for resulting discriminatory impacts.\n• Many employers transfer employee data to third party job verification services. This information is then used\nby potential future employers, banks, or landlords. In one case, a former employee alleged that a\ncompany supplied false data about her job title which resulted in a job offer being revoked.77\n37",
401
+ ]
402
+ embeddings = model.encode(sentences)
403
+ print(embeddings.shape)
404
+ # [3, 768]
405
+
406
+ # Get the similarity scores for the embeddings
407
+ similarities = model.similarity(embeddings, embeddings)
408
+ print(similarities.shape)
409
+ # [3, 3]
410
+ ```
411
+
412
+ <!--
413
+ ### Direct Usage (Transformers)
414
+
415
+ <details><summary>Click to see the direct usage in Transformers</summary>
416
+
417
+ </details>
418
+ -->
419
+
420
+ <!--
421
+ ### Downstream Usage (Sentence Transformers)
422
+
423
+ You can finetune this model on your own dataset.
424
+
425
+ <details><summary>Click to expand</summary>
426
+
427
+ </details>
428
+ -->
429
+
430
+ <!--
431
+ ### Out-of-Scope Use
432
+
433
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
434
+ -->
435
+
436
+ ## Evaluation
437
+
438
+ ### Metrics
439
+
440
+ #### Information Retrieval
441
+
442
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
443
+
444
+ | Metric | Value |
445
+ |:--------------------|:-----------|
446
+ | cosine_accuracy@1 | 0.815 |
447
+ | cosine_accuracy@3 | 0.935 |
448
+ | cosine_accuracy@5 | 0.95 |
449
+ | cosine_accuracy@10 | 0.965 |
450
+ | cosine_precision@1 | 0.815 |
451
+ | cosine_precision@3 | 0.3117 |
452
+ | cosine_precision@5 | 0.19 |
453
+ | cosine_precision@10 | 0.0965 |
454
+ | cosine_recall@1 | 0.815 |
455
+ | cosine_recall@3 | 0.935 |
456
+ | cosine_recall@5 | 0.95 |
457
+ | cosine_recall@10 | 0.965 |
458
+ | cosine_ndcg@10 | 0.8954 |
459
+ | cosine_mrr@10 | 0.8723 |
460
+ | **cosine_map@100** | **0.8742** |
461
+ | dot_accuracy@1 | 0.815 |
462
+ | dot_accuracy@3 | 0.935 |
463
+ | dot_accuracy@5 | 0.95 |
464
+ | dot_accuracy@10 | 0.965 |
465
+ | dot_precision@1 | 0.815 |
466
+ | dot_precision@3 | 0.3117 |
467
+ | dot_precision@5 | 0.19 |
468
+ | dot_precision@10 | 0.0965 |
469
+ | dot_recall@1 | 0.815 |
470
+ | dot_recall@3 | 0.935 |
471
+ | dot_recall@5 | 0.95 |
472
+ | dot_recall@10 | 0.965 |
473
+ | dot_ndcg@10 | 0.8954 |
474
+ | dot_mrr@10 | 0.8723 |
475
+ | dot_map@100 | 0.8742 |
476
+
477
+ <!--
478
+ ## Bias, Risks and Limitations
479
+
480
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
481
+ -->
482
+
483
+ <!--
484
+ ### Recommendations
485
+
486
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
487
+ -->
488
+
489
+ ## Training Details
490
+
491
+ ### Training Dataset
492
+
493
+ #### Unnamed Dataset
494
+
495
+
496
+ * Size: 800 training samples
497
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
498
+ * Approximate statistics based on the first 800 samples:
499
+ | | sentence_0 | sentence_1 |
500
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
501
+ | type | string | string |
502
+ | details | <ul><li>min: 11 tokens</li><li>mean: 20.11 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 127.42 tokens</li><li>max: 512 tokens</li></ul> |
503
+ * Samples:
504
+ | sentence_0 | sentence_1 |
505
+ |:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
506
+ | <code>What are some of the principles proposed for the ethical use of AI and automated systems?</code> | <code>lems with legislation, and some courts extending longstanding statutory protections to new and emerging tech­<br>nologies. There are companies working to incorporate additional protections in their design and use of auto­<br>mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government <br>organizations have proposed principles for the ethical use of AI and other automated systems. These include <br>the Organization for Economic Co-operation and Development’s (OECD’s) 2019 Recommendation on Artificial <br>Intelligence, which includes principles for responsible stewardship of trustworthy AI and which the United</code> |
507
+ | <code>How are companies and researchers addressing the challenges posed by new and emerging technologies in relation to legislation?</code> | <code>lems with legislation, and some courts extending longstanding statutory protections to new and emerging tech­<br>nologies. There are companies working to incorporate additional protections in their design and use of auto­<br>mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government <br>organizations have proposed principles for the ethical use of AI and other automated systems. These include <br>the Organization for Economic Co-operation and Development’s (OECD’s) 2019 Recommendation on Artificial <br>Intelligence, which includes principles for responsible stewardship of trustworthy AI and which the United</code> |
508
+ | <code>What is the purpose of reporting summary information about automated systems in plain language?</code> | <code>any operators or others who need to understand the system, and calibrated to the level of risk based on the <br>context. Reporting that includes summary information about these automated systems in plain language and <br>assessments of the clarity and quality of the notice and explanations should be made public whenever possible. <br>6</code> |
509
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
510
+ ```json
511
+ {
512
+ "loss": "MultipleNegativesRankingLoss",
513
+ "matryoshka_dims": [
514
+ 768,
515
+ 512,
516
+ 256,
517
+ 128,
518
+ 64
519
+ ],
520
+ "matryoshka_weights": [
521
+ 1,
522
+ 1,
523
+ 1,
524
+ 1,
525
+ 1
526
+ ],
527
+ "n_dims_per_step": -1
528
+ }
529
+ ```
530
+
531
+ ### Training Hyperparameters
532
+ #### Non-Default Hyperparameters
533
+
534
+ - `eval_strategy`: steps
535
+ - `per_device_train_batch_size`: 20
536
+ - `per_device_eval_batch_size`: 20
537
+ - `num_train_epochs`: 5
538
+ - `multi_dataset_batch_sampler`: round_robin
539
+
540
+ #### All Hyperparameters
541
+ <details><summary>Click to expand</summary>
542
+
543
+ - `overwrite_output_dir`: False
544
+ - `do_predict`: False
545
+ - `eval_strategy`: steps
546
+ - `prediction_loss_only`: True
547
+ - `per_device_train_batch_size`: 20
548
+ - `per_device_eval_batch_size`: 20
549
+ - `per_gpu_train_batch_size`: None
550
+ - `per_gpu_eval_batch_size`: None
551
+ - `gradient_accumulation_steps`: 1
552
+ - `eval_accumulation_steps`: None
553
+ - `torch_empty_cache_steps`: None
554
+ - `learning_rate`: 5e-05
555
+ - `weight_decay`: 0.0
556
+ - `adam_beta1`: 0.9
557
+ - `adam_beta2`: 0.999
558
+ - `adam_epsilon`: 1e-08
559
+ - `max_grad_norm`: 1
560
+ - `num_train_epochs`: 5
561
+ - `max_steps`: -1
562
+ - `lr_scheduler_type`: linear
563
+ - `lr_scheduler_kwargs`: {}
564
+ - `warmup_ratio`: 0.0
565
+ - `warmup_steps`: 0
566
+ - `log_level`: passive
567
+ - `log_level_replica`: warning
568
+ - `log_on_each_node`: True
569
+ - `logging_nan_inf_filter`: True
570
+ - `save_safetensors`: True
571
+ - `save_on_each_node`: False
572
+ - `save_only_model`: False
573
+ - `restore_callback_states_from_checkpoint`: False
574
+ - `no_cuda`: False
575
+ - `use_cpu`: False
576
+ - `use_mps_device`: False
577
+ - `seed`: 42
578
+ - `data_seed`: None
579
+ - `jit_mode_eval`: False
580
+ - `use_ipex`: False
581
+ - `bf16`: False
582
+ - `fp16`: False
583
+ - `fp16_opt_level`: O1
584
+ - `half_precision_backend`: auto
585
+ - `bf16_full_eval`: False
586
+ - `fp16_full_eval`: False
587
+ - `tf32`: None
588
+ - `local_rank`: 0
589
+ - `ddp_backend`: None
590
+ - `tpu_num_cores`: None
591
+ - `tpu_metrics_debug`: False
592
+ - `debug`: []
593
+ - `dataloader_drop_last`: False
594
+ - `dataloader_num_workers`: 0
595
+ - `dataloader_prefetch_factor`: None
596
+ - `past_index`: -1
597
+ - `disable_tqdm`: False
598
+ - `remove_unused_columns`: True
599
+ - `label_names`: None
600
+ - `load_best_model_at_end`: False
601
+ - `ignore_data_skip`: False
602
+ - `fsdp`: []
603
+ - `fsdp_min_num_params`: 0
604
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
605
+ - `fsdp_transformer_layer_cls_to_wrap`: None
606
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
607
+ - `deepspeed`: None
608
+ - `label_smoothing_factor`: 0.0
609
+ - `optim`: adamw_torch
610
+ - `optim_args`: None
611
+ - `adafactor`: False
612
+ - `group_by_length`: False
613
+ - `length_column_name`: length
614
+ - `ddp_find_unused_parameters`: None
615
+ - `ddp_bucket_cap_mb`: None
616
+ - `ddp_broadcast_buffers`: False
617
+ - `dataloader_pin_memory`: True
618
+ - `dataloader_persistent_workers`: False
619
+ - `skip_memory_metrics`: True
620
+ - `use_legacy_prediction_loop`: False
621
+ - `push_to_hub`: False
622
+ - `resume_from_checkpoint`: None
623
+ - `hub_model_id`: None
624
+ - `hub_strategy`: every_save
625
+ - `hub_private_repo`: False
626
+ - `hub_always_push`: False
627
+ - `gradient_checkpointing`: False
628
+ - `gradient_checkpointing_kwargs`: None
629
+ - `include_inputs_for_metrics`: False
630
+ - `eval_do_concat_batches`: True
631
+ - `fp16_backend`: auto
632
+ - `push_to_hub_model_id`: None
633
+ - `push_to_hub_organization`: None
634
+ - `mp_parameters`:
635
+ - `auto_find_batch_size`: False
636
+ - `full_determinism`: False
637
+ - `torchdynamo`: None
638
+ - `ray_scope`: last
639
+ - `ddp_timeout`: 1800
640
+ - `torch_compile`: False
641
+ - `torch_compile_backend`: None
642
+ - `torch_compile_mode`: None
643
+ - `dispatch_batches`: None
644
+ - `split_batches`: None
645
+ - `include_tokens_per_second`: False
646
+ - `include_num_input_tokens_seen`: False
647
+ - `neftune_noise_alpha`: None
648
+ - `optim_target_modules`: None
649
+ - `batch_eval_metrics`: False
650
+ - `eval_on_start`: False
651
+ - `eval_use_gather_object`: False
652
+ - `batch_sampler`: batch_sampler
653
+ - `multi_dataset_batch_sampler`: round_robin
654
+
655
+ </details>
656
+
657
+ ### Training Logs
658
+ | Epoch | Step | cosine_map@100 |
659
+ |:-----:|:----:|:--------------:|
660
+ | 1.0 | 40 | 0.8676 |
661
+ | 1.25 | 50 | 0.8670 |
662
+ | 2.0 | 80 | 0.8731 |
663
+ | 2.5 | 100 | 0.8722 |
664
+ | 1.0 | 40 | 0.8641 |
665
+ | 1.25 | 50 | 0.8654 |
666
+ | 2.0 | 80 | 0.8674 |
667
+ | 2.5 | 100 | 0.8706 |
668
+ | 3.0 | 120 | 0.8659 |
669
+ | 3.75 | 150 | 0.8697 |
670
+ | 4.0 | 160 | 0.8706 |
671
+ | 5.0 | 200 | 0.8742 |
672
+
673
+
674
+ ### Framework Versions
675
+ - Python: 3.10.12
676
+ - Sentence Transformers: 3.1.1
677
+ - Transformers: 4.44.2
678
+ - PyTorch: 2.4.1+cu121
679
+ - Accelerate: 0.34.2
680
+ - Datasets: 3.0.0
681
+ - Tokenizers: 0.19.1
682
+
683
+ ## Citation
684
+
685
+ ### BibTeX
686
+
687
+ #### Sentence Transformers
688
+ ```bibtex
689
+ @inproceedings{reimers-2019-sentence-bert,
690
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
691
+ author = "Reimers, Nils and Gurevych, Iryna",
692
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
693
+ month = "11",
694
+ year = "2019",
695
+ publisher = "Association for Computational Linguistics",
696
+ url = "https://arxiv.org/abs/1908.10084",
697
+ }
698
+ ```
699
+
700
+ #### MatryoshkaLoss
701
+ ```bibtex
702
+ @misc{kusupati2024matryoshka,
703
+ title={Matryoshka Representation Learning},
704
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
705
+ year={2024},
706
+ eprint={2205.13147},
707
+ archivePrefix={arXiv},
708
+ primaryClass={cs.LG}
709
+ }
710
+ ```
711
+
712
+ #### MultipleNegativesRankingLoss
713
+ ```bibtex
714
+ @misc{henderson2017efficient,
715
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
716
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
717
+ year={2017},
718
+ eprint={1705.00652},
719
+ archivePrefix={arXiv},
720
+ primaryClass={cs.CL}
721
+ }
722
+ ```
723
+
724
+ <!--
725
+ ## Glossary
726
+
727
+ *Clearly define terms in order to be accessible across audiences.*
728
+ -->
729
+
730
+ <!--
731
+ ## Model Card Authors
732
+
733
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
734
+ -->
735
+
736
+ <!--
737
+ ## Model Card Contact
738
+
739
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
740
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ff605eeb7699f6f11bb8e2cbcfcb90138696d1244cec8b3bf037577de8bddba
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff