|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xsum |
|
metrics: |
|
- rouge |
|
base_model: google/flan-t5-base |
|
model-index: |
|
- name: flan-t5-base-xsum |
|
results: |
|
- task: |
|
type: text2text-generation |
|
name: Sequence-to-sequence Language Modeling |
|
dataset: |
|
name: xsum |
|
type: xsum |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- type: rouge |
|
value: 32.3503 |
|
name: Rouge1 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-xsum |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the xsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0798 |
|
- Rouge1: 32.3503 |
|
- Rouge2: 10.8909 |
|
- Rougel: 25.9346 |
|
- Rougelsum: 25.9216 |
|
- Gen Len: 18.8494 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adafactor |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.335 | 1.0 | 1417 | 2.0823 | 31.3453 | 10.2077 | 25.0051 | 25.008 | 18.8259 | |
|
| 1.8642 | 2.0 | 2834 | 2.0798 | 32.3503 | 10.8909 | 25.9346 | 25.9216 | 18.8494 | |
|
| 1.5208 | 3.0 | 4251 | 2.1272 | 32.6743 | 11.3394 | 26.3776 | 26.3724 | 18.8435 | |
|
| 1.2628 | 4.0 | 5668 | 2.2110 | 32.695 | 11.3273 | 26.3215 | 26.322 | 18.8306 | |
|
| 1.0649 | 5.0 | 7085 | 2.3143 | 32.5287 | 11.3662 | 26.274 | 26.2741 | 18.8345 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.0 |
|
- Tokenizers 0.13.2 |
|
|