lc-to-event-BART / README.md
abirmondalind's picture
End of training
ac48407 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/bart-base
tags:
  - generated_from_trainer
metrics:
  - rouge
  - bleu
model-index:
  - name: lc-to-event-BART
    results: []

lc-to-event-BART

This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2962
  • Rouge1: 0.0905
  • Rouge2: 0.0195
  • Rougel: 0.0903
  • Rougelsum: 0.0904
  • Bleu: 0.0
  • Gen Len: 7.2644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleu Gen Len
0.327 0.3618 1000 0.3132 0.0821 0.0112 0.0820 0.0820 0.0 7.0490
0.3177 0.7236 2000 0.3049 0.0833 0.0137 0.0833 0.0833 0.0 7.0730
0.2963 1.0854 3000 0.3009 0.0916 0.0154 0.0915 0.0914 0.0 6.9973
0.2943 1.4472 4000 0.2975 0.0811 0.0159 0.0811 0.0811 0.0 7.2202
0.2933 1.8090 5000 0.2952 0.0880 0.0152 0.0880 0.0880 0.0 6.9883
0.2765 2.1708 6000 0.2956 0.0871 0.0180 0.0870 0.0871 0.0 7.1586
0.2761 2.5326 7000 0.2951 0.0880 0.0167 0.0879 0.0880 0.0 7.1181
0.2743 2.8944 8000 0.2928 0.0921 0.0181 0.0920 0.0921 0.0 7.0337
0.2599 3.2562 9000 0.2960 0.0900 0.0192 0.0900 0.0899 0.0 7.2215
0.2612 3.6179 10000 0.2944 0.0907 0.0189 0.0905 0.0906 0.0 7.2409
0.261 3.9797 11000 0.2940 0.0881 0.0203 0.0878 0.0878 0.0 7.2495
0.2487 4.3415 12000 0.2967 0.0881 0.0194 0.0878 0.0879 0.0 7.2486
0.2484 4.7033 13000 0.2962 0.0905 0.0195 0.0903 0.0904 0.0 7.2644

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2