metadata
library_name: transformers
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: lc-to-event-BART
results: []
lc-to-event-BART
This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2962
- Rouge1: 0.0905
- Rouge2: 0.0195
- Rougel: 0.0903
- Rougelsum: 0.0904
- Bleu: 0.0
- Gen Len: 7.2644
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len |
---|---|---|---|---|---|---|---|---|---|
0.327 | 0.3618 | 1000 | 0.3132 | 0.0821 | 0.0112 | 0.0820 | 0.0820 | 0.0 | 7.0490 |
0.3177 | 0.7236 | 2000 | 0.3049 | 0.0833 | 0.0137 | 0.0833 | 0.0833 | 0.0 | 7.0730 |
0.2963 | 1.0854 | 3000 | 0.3009 | 0.0916 | 0.0154 | 0.0915 | 0.0914 | 0.0 | 6.9973 |
0.2943 | 1.4472 | 4000 | 0.2975 | 0.0811 | 0.0159 | 0.0811 | 0.0811 | 0.0 | 7.2202 |
0.2933 | 1.8090 | 5000 | 0.2952 | 0.0880 | 0.0152 | 0.0880 | 0.0880 | 0.0 | 6.9883 |
0.2765 | 2.1708 | 6000 | 0.2956 | 0.0871 | 0.0180 | 0.0870 | 0.0871 | 0.0 | 7.1586 |
0.2761 | 2.5326 | 7000 | 0.2951 | 0.0880 | 0.0167 | 0.0879 | 0.0880 | 0.0 | 7.1181 |
0.2743 | 2.8944 | 8000 | 0.2928 | 0.0921 | 0.0181 | 0.0920 | 0.0921 | 0.0 | 7.0337 |
0.2599 | 3.2562 | 9000 | 0.2960 | 0.0900 | 0.0192 | 0.0900 | 0.0899 | 0.0 | 7.2215 |
0.2612 | 3.6179 | 10000 | 0.2944 | 0.0907 | 0.0189 | 0.0905 | 0.0906 | 0.0 | 7.2409 |
0.261 | 3.9797 | 11000 | 0.2940 | 0.0881 | 0.0203 | 0.0878 | 0.0878 | 0.0 | 7.2495 |
0.2487 | 4.3415 | 12000 | 0.2967 | 0.0881 | 0.0194 | 0.0878 | 0.0879 | 0.0 | 7.2486 |
0.2484 | 4.7033 | 13000 | 0.2962 | 0.0905 | 0.0195 | 0.0903 | 0.0904 | 0.0 | 7.2644 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2