abhishtagatya
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,8 @@ metrics:
|
|
11 |
model-index:
|
12 |
- name: hubert-base-960h-itw-deepfake
|
13 |
results: []
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -22,13 +24,24 @@ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggi
|
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 0.0756
|
24 |
- Accuracy: 0.9873
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
|
29 |
## Model description
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
## Intended uses & limitations
|
34 |
|
@@ -55,7 +68,7 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
59 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:|
|
60 |
| 0.4081 | 0.39 | 2500 | 0.1152 | 0.9722 | 0.0285 | 0.0267 | 0.0276 |
|
61 |
| 0.1168 | 0.79 | 5000 | 0.0822 | 0.9844 | 0.0120 | 0.0216 | 0.0168 |
|
@@ -69,4 +82,4 @@ The following hyperparameters were used during training:
|
|
69 |
- Transformers 4.38.0.dev0
|
70 |
- Pytorch 2.1.2+cu121
|
71 |
- Datasets 2.16.2.dev0
|
72 |
-
- Tokenizers 0.15.1
|
|
|
11 |
model-index:
|
12 |
- name: hubert-base-960h-itw-deepfake
|
13 |
results: []
|
14 |
+
language:
|
15 |
+
- en
|
16 |
---
|
17 |
|
18 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
24 |
It achieves the following results on the evaluation set:
|
25 |
- Loss: 0.0756
|
26 |
- Accuracy: 0.9873
|
27 |
+
- FAR: 0.0083
|
28 |
+
- FRR: 0.0203
|
29 |
+
- EER: 0.0143
|
30 |
|
31 |
## Model description
|
32 |
|
33 |
+
### Quick Use
|
34 |
+
|
35 |
+
```py3
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
|
38 |
+
config = AutoConfig.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake")
|
39 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake")
|
40 |
+
|
41 |
+
model = HubertForSequenceClassification.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake", config=config,).to(device)
|
42 |
+
|
43 |
+
# Your Logic Here
|
44 |
+
```
|
45 |
|
46 |
## Intended uses & limitations
|
47 |
|
|
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | FAR | FRR | EER |
|
72 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:|
|
73 |
| 0.4081 | 0.39 | 2500 | 0.1152 | 0.9722 | 0.0285 | 0.0267 | 0.0276 |
|
74 |
| 0.1168 | 0.79 | 5000 | 0.0822 | 0.9844 | 0.0120 | 0.0216 | 0.0168 |
|
|
|
82 |
- Transformers 4.38.0.dev0
|
83 |
- Pytorch 2.1.2+cu121
|
84 |
- Datasets 2.16.2.dev0
|
85 |
+
- Tokenizers 0.15.1
|