librarian-bot's picture
Librarian Bot: Add base_model information to model
836735b
|
raw
history blame
2.05 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-mrpc
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.8578431372549019
name: Accuracy
- type: f1
value: 0.9006849315068494
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-mrpc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5556
- Accuracy: 0.8578
- F1: 0.9007
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 230 | 0.3937 | 0.8113 | 0.8670 |
| No log | 2.0 | 460 | 0.3660 | 0.8480 | 0.8967 |
| 0.4387 | 3.0 | 690 | 0.4298 | 0.8529 | 0.8973 |
| 0.4387 | 4.0 | 920 | 0.5573 | 0.8529 | 0.8990 |
| 0.1832 | 5.0 | 1150 | 0.5556 | 0.8578 | 0.9007 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1