albert-squad-v2 / README.md
abhilash1910's picture
Add tags
fa11a57
|
raw
history blame
1.25 kB

Albert Transformer on SQuAD-v2

Training is done on the SQuAD_v2 dataset. The model can be accessed via HuggingFace:

Model Specifications

We have used the following parameters:

  • num_train_epochs=0.25,
  • per_device_train_batch_size=5,
  • per_device_eval_batch_size=10,
  • warmup_steps=100,
  • weight_decay=0.01,

Usage Specifications

from transformers import AutoTokenizer,AutoModelForQuestionAnswering
from transformers import pipeline
model=AutoModelForQuestionAnswering.from_pretrained('abhilash1910/albert-squad-v2')
tokenizer=AutoTokenizer.from_pretrained('abhilash1910/albert-squad-v2')
nlp_QA=pipeline('question-answering',model=model,tokenizer=tokenizer)
QA_inp={
    'question': 'How many parameters does Bert large have?',
    'context': 'Bert large is really big... it has 24 layers, for a total of 340M parameters.Altogether it is 1.34 GB so expect it to take a couple minutes to download to your Colab instance.'
}
result=nlp_QA(QA_inp)
result

Result

The result is:

{'answer': '340M', 'end': 65, 'score': 0.14847151935100555, 'start': 61}


language:

  • en license: apache-2.0 datasets:
  • squad_v2