abhijit2111 commited on
Commit
f628f04
·
verified ·
1 Parent(s): 68e8957

Upload 10 files

Browse files
README.md CHANGED
@@ -1,3 +1,151 @@
1
  ---
2
- license: mit
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: image-to-text
3
+ tags:
4
+ - image-captioning
5
+ languages:
6
+ - en
7
+ license: bsd-3-clause
8
  ---
9
+
10
+ This isi the BLIP salesforce large image captioning model with small adjustments to the paramaters on the back end for testing - note in particular the length of reply is increased.
11
+
12
+
13
+ # BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
14
+
15
+ Model card for image captioning pretrained on COCO dataset - base architecture (with ViT large backbone).
16
+
17
+ | ![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) |
18
+ |:--:|
19
+ | <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
20
+
21
+ ## TL;DR
22
+
23
+ Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
24
+
25
+ *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
26
+
27
+ ## Usage
28
+
29
+ You can use this model for conditional and un-conditional image captioning
30
+
31
+ ### Using the Pytorch model
32
+
33
+ #### Running the model on CPU
34
+
35
+ <details>
36
+ <summary> Click to expand </summary>
37
+
38
+ ```python
39
+ import requests
40
+ from PIL import Image
41
+ from transformers import BlipProcessor, BlipForConditionalGeneration
42
+
43
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
44
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
45
+
46
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
47
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
48
+
49
+ # conditional image captioning
50
+ text = "a photography of"
51
+ inputs = processor(raw_image, text, return_tensors="pt")
52
+
53
+ out = model.generate(**inputs)
54
+ print(processor.decode(out[0], skip_special_tokens=True))
55
+
56
+ # unconditional image captioning
57
+ inputs = processor(raw_image, return_tensors="pt")
58
+
59
+ out = model.generate(**inputs)
60
+ print(processor.decode(out[0], skip_special_tokens=True))
61
+ ```
62
+ </details>
63
+
64
+ #### Running the model on GPU
65
+
66
+ ##### In full precision
67
+
68
+ <details>
69
+ <summary> Click to expand </summary>
70
+
71
+ ```python
72
+ import requests
73
+ from PIL import Image
74
+ from transformers import BlipProcessor, BlipForConditionalGeneration
75
+
76
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
77
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda")
78
+
79
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
80
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
81
+
82
+ # conditional image captioning
83
+ text = "a photography of"
84
+ inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
85
+
86
+ out = model.generate(**inputs)
87
+ print(processor.decode(out[0], skip_special_tokens=True))
88
+
89
+ # unconditional image captioning
90
+ inputs = processor(raw_image, return_tensors="pt").to("cuda")
91
+
92
+ out = model.generate(**inputs)
93
+ print(processor.decode(out[0], skip_special_tokens=True))
94
+ ```
95
+ </details>
96
+
97
+ ##### In half precision (`float16`)
98
+
99
+ <details>
100
+ <summary> Click to expand </summary>
101
+
102
+ ```python
103
+ import torch
104
+ import requests
105
+ from PIL import Image
106
+ from transformers import BlipProcessor, BlipForConditionalGeneration
107
+
108
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
109
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
110
+
111
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
112
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
113
+
114
+ # conditional image captioning
115
+ text = "a photography of"
116
+ inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
117
+
118
+ out = model.generate(**inputs)
119
+ print(processor.decode(out[0], skip_special_tokens=True))
120
+ # >>> a photography of a woman and her dog
121
+
122
+ # unconditional image captioning
123
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
124
+
125
+ out = model.generate(**inputs)
126
+ print(processor.decode(out[0], skip_special_tokens=True))
127
+ >>> a woman sitting on the beach with her dog
128
+ ```
129
+ </details>
130
+
131
+ ## BibTex and citation info
132
+
133
+ ```
134
+ @misc{https://doi.org/10.48550/arxiv.2201.12086,
135
+ doi = {10.48550/ARXIV.2201.12086},
136
+
137
+ url = {https://arxiv.org/abs/2201.12086},
138
+
139
+ author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
140
+
141
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
142
+
143
+ title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
144
+
145
+ publisher = {arXiv},
146
+
147
+ year = {2022},
148
+
149
+ copyright = {Creative Commons Attribution 4.0 International}
150
+ }
151
+ ```
config.json ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "BlipForConditionalGeneration"
5
+ ],
6
+ "image_text_hidden_size": 256,
7
+ "initializer_factor": 1.0,
8
+ "logit_scale_init_value": 2.6592,
9
+ "model_type": "blip",
10
+ "projection_dim": 512,
11
+ "text_config": {
12
+ "_name_or_path": "",
13
+ "add_cross_attention": false,
14
+ "architectures": null,
15
+ "attention_probs_dropout_prob": 0.0,
16
+ "bad_words_ids": null,
17
+ "begin_suppress_tokens": null,
18
+ "bos_token_id": 30522,
19
+ "chunk_size_feed_forward": 0,
20
+ "cross_attention_hidden_size": null,
21
+ "decoder_start_token_id": null,
22
+ "diversity_penalty": 0.0,
23
+ "do_sample": false,
24
+ "early_stopping": false,
25
+ "encoder_hidden_size": 1024,
26
+ "encoder_no_repeat_ngram_size": 0,
27
+ "eos_token_id": 2,
28
+ "exponential_decay_length_penalty": null,
29
+ "finetuning_task": null,
30
+ "forced_bos_token_id": null,
31
+ "forced_eos_token_id": null,
32
+ "hidden_act": "gelu",
33
+ "hidden_dropout_prob": 0.0,
34
+ "hidden_size": 768,
35
+ "id2label": {
36
+ "0": "LABEL_0",
37
+ "1": "LABEL_1"
38
+ },
39
+ "initializer_factor": 1.0,
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 3072,
42
+ "is_decoder": true,
43
+ "is_encoder_decoder": false,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1
47
+ },
48
+ "layer_norm_eps": 1e-12,
49
+ "length_penalty": 1.0,
50
+ "max_length": 50,
51
+ "max_position_embeddings": 512,
52
+ "min_length": 20,
53
+ "model_type": "blip_text_model",
54
+ "no_repeat_ngram_size": 0,
55
+ "num_attention_heads": 12,
56
+ "num_beam_groups": 1,
57
+ "num_beams": 1,
58
+ "num_hidden_layers": 12,
59
+ "num_return_sequences": 1,
60
+ "output_attentions": false,
61
+ "output_hidden_states": false,
62
+ "output_scores": false,
63
+ "pad_token_id": 0,
64
+ "prefix": null,
65
+ "problem_type": null,
66
+ "projection_dim": 768,
67
+ "pruned_heads": {},
68
+ "remove_invalid_values": false,
69
+ "repetition_penalty": 1.0,
70
+ "return_dict": true,
71
+ "return_dict_in_generate": false,
72
+ "sep_token_id": 102,
73
+ "suppress_tokens": null,
74
+ "task_specific_params": null,
75
+ "temperature": 1.0,
76
+ "tf_legacy_loss": false,
77
+ "tie_encoder_decoder": false,
78
+ "tie_word_embeddings": true,
79
+ "tokenizer_class": null,
80
+ "top_k": 50,
81
+ "top_p": 1.0,
82
+ "torch_dtype": null,
83
+ "torchscript": false,
84
+ "transformers_version": "4.26.0.dev0",
85
+ "typical_p": 1.0,
86
+ "use_bfloat16": false,
87
+ "use_cache": true,
88
+ "vocab_size": 30524
89
+ },
90
+ "torch_dtype": "float32",
91
+ "transformers_version": null,
92
+ "vision_config": {
93
+ "_name_or_path": "",
94
+ "add_cross_attention": false,
95
+ "architectures": null,
96
+ "attention_dropout": 0.0,
97
+ "bad_words_ids": null,
98
+ "begin_suppress_tokens": null,
99
+ "bos_token_id": null,
100
+ "chunk_size_feed_forward": 0,
101
+ "cross_attention_hidden_size": null,
102
+ "decoder_start_token_id": null,
103
+ "diversity_penalty": 0.0,
104
+ "do_sample": false,
105
+ "dropout": 0.0,
106
+ "early_stopping": false,
107
+ "encoder_no_repeat_ngram_size": 0,
108
+ "eos_token_id": null,
109
+ "exponential_decay_length_penalty": null,
110
+ "finetuning_task": null,
111
+ "forced_bos_token_id": null,
112
+ "forced_eos_token_id": null,
113
+ "hidden_act": "gelu",
114
+ "hidden_size": 1024,
115
+ "id2label": {
116
+ "0": "LABEL_0",
117
+ "1": "LABEL_1"
118
+ },
119
+ "image_size": 384,
120
+ "initializer_factor": 1.0,
121
+ "initializer_range": 0.02,
122
+ "intermediate_size": 4096,
123
+ "is_decoder": false,
124
+ "is_encoder_decoder": false,
125
+ "label2id": {
126
+ "LABEL_0": 0,
127
+ "LABEL_1": 1
128
+ },
129
+ "layer_norm_eps": 1e-05,
130
+ "length_penalty": 1.0,
131
+ "max_length": 20,
132
+ "min_length": 0,
133
+ "model_type": "blip_vision_model",
134
+ "no_repeat_ngram_size": 0,
135
+ "num_attention_heads": 16,
136
+ "num_beam_groups": 1,
137
+ "num_beams": 1,
138
+ "num_channels": 3,
139
+ "num_hidden_layers": 24,
140
+ "num_return_sequences": 1,
141
+ "output_attentions": false,
142
+ "output_hidden_states": false,
143
+ "output_scores": false,
144
+ "pad_token_id": null,
145
+ "patch_size": 16,
146
+ "prefix": null,
147
+ "problem_type": null,
148
+ "projection_dim": 512,
149
+ "pruned_heads": {},
150
+ "remove_invalid_values": false,
151
+ "repetition_penalty": 1.0,
152
+ "return_dict": true,
153
+ "return_dict_in_generate": false,
154
+ "sep_token_id": null,
155
+ "suppress_tokens": null,
156
+ "task_specific_params": null,
157
+ "temperature": 1.0,
158
+ "tf_legacy_loss": false,
159
+ "tie_encoder_decoder": false,
160
+ "tie_word_embeddings": true,
161
+ "tokenizer_class": null,
162
+ "top_k": 50,
163
+ "top_p": 1.0,
164
+ "torch_dtype": null,
165
+ "torchscript": false,
166
+ "transformers_version": "4.26.0.dev0",
167
+ "typical_p": 1.0,
168
+ "use_bfloat16": false
169
+ }
170
+ }
gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_pad": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "BlipImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "processor_class": "BlipProcessor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 384,
22
+ "width": 384
23
+ },
24
+ "size_divisor": 32
25
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66c8aec8d91b5e74b86bde343ed95fb53e9ccf9ffc77c5093890df662d234e04
3
+ size 1879143921
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fb4b74fce7b1f965cbc7bc9b58db27cfaaebfa0d86e27d49fec877288a11852
3
+ size 1879709248
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "name_or_path": "Salesforce/blip-image-captioning-large",
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "processor_class": "BlipProcessor",
11
+ "sep_token": "[SEP]",
12
+ "special_tokens_map_file": null,
13
+ "strip_accents": null,
14
+ "tokenize_chinese_chars": true,
15
+ "tokenizer_class": "BertTokenizer",
16
+ "unk_token": "[UNK]",
17
+ "model_input_names": [
18
+ "input_ids",
19
+ "attention_mask"
20
+ ]
21
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff