Abdulwahab Sahyoun commited on
Commit
6bf0d45
1 Parent(s): 2403387

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -9
README.md CHANGED
@@ -1,8 +1,5 @@
1
  ---
2
- license: apache-2.0
3
  tags:
4
- - automatic-speech-recognition
5
- - abdusahmbzuai/arabic_speech_massive_300hrs
6
  - generated_from_trainer
7
  model-index:
8
  - name: aradia-ctc-hubert-ft
@@ -14,10 +11,10 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # aradia-ctc-hubert-ft
16
 
17
- This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.6946
20
- - Wer: 0.3940
21
 
22
  ## Model description
23
 
@@ -45,7 +42,7 @@ The following hyperparameters were used during training:
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_steps: 500
48
- - num_epochs: 15.0
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
@@ -84,8 +81,43 @@ The following hyperparameters were used during training:
84
  | 0.3919 | 13.04 | 3000 | 0.6778 | 0.3966 |
85
  | 0.3919 | 13.48 | 3100 | 0.6872 | 0.3971 |
86
  | 0.3919 | 13.91 | 3200 | 0.6882 | 0.3945 |
87
- | 0.3919 | 14.35 | 3300 | 0.6938 | 0.3937 |
88
- | 0.3919 | 14.78 | 3400 | 0.6928 | 0.3946 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
 
91
  ### Framework versions
 
1
  ---
 
2
  tags:
 
 
3
  - generated_from_trainer
4
  model-index:
5
  - name: aradia-ctc-hubert-ft
 
11
 
12
  # aradia-ctc-hubert-ft
13
 
14
+ This model was trained from scratch on an unknown dataset.
15
  It achieves the following results on the evaluation set:
16
+ - Loss: 0.8536
17
+ - Wer: 0.3737
18
 
19
  ## Model description
20
 
 
42
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
  - lr_scheduler_type: linear
44
  - lr_scheduler_warmup_steps: 500
45
+ - num_epochs: 30.0
46
  - mixed_precision_training: Native AMP
47
 
48
  ### Training results
 
81
  | 0.3919 | 13.04 | 3000 | 0.6778 | 0.3966 |
82
  | 0.3919 | 13.48 | 3100 | 0.6872 | 0.3971 |
83
  | 0.3919 | 13.91 | 3200 | 0.6882 | 0.3945 |
84
+ | 0.3919 | 14.35 | 3300 | 0.7177 | 0.4010 |
85
+ | 0.3919 | 14.78 | 3400 | 0.6888 | 0.4043 |
86
+ | 0.3767 | 15.22 | 3500 | 0.7124 | 0.4202 |
87
+ | 0.3767 | 15.65 | 3600 | 0.7276 | 0.4120 |
88
+ | 0.3767 | 16.09 | 3700 | 0.7265 | 0.4034 |
89
+ | 0.3767 | 16.52 | 3800 | 0.7392 | 0.4077 |
90
+ | 0.3767 | 16.95 | 3900 | 0.7403 | 0.3965 |
91
+ | 0.3603 | 17.39 | 4000 | 0.7445 | 0.4016 |
92
+ | 0.3603 | 17.82 | 4100 | 0.7579 | 0.4012 |
93
+ | 0.3603 | 18.26 | 4200 | 0.7225 | 0.3963 |
94
+ | 0.3603 | 18.69 | 4300 | 0.7355 | 0.3951 |
95
+ | 0.3603 | 19.13 | 4400 | 0.7482 | 0.3925 |
96
+ | 0.3153 | 19.56 | 4500 | 0.7723 | 0.3972 |
97
+ | 0.3153 | 20.0 | 4600 | 0.7469 | 0.3898 |
98
+ | 0.3153 | 20.43 | 4700 | 0.7800 | 0.3944 |
99
+ | 0.3153 | 20.87 | 4800 | 0.7827 | 0.3897 |
100
+ | 0.3153 | 21.3 | 4900 | 0.7935 | 0.3914 |
101
+ | 0.286 | 21.74 | 5000 | 0.7984 | 0.3750 |
102
+ | 0.286 | 22.17 | 5100 | 0.7945 | 0.3830 |
103
+ | 0.286 | 22.61 | 5200 | 0.8011 | 0.3775 |
104
+ | 0.286 | 23.04 | 5300 | 0.7978 | 0.3824 |
105
+ | 0.286 | 23.48 | 5400 | 0.8161 | 0.3833 |
106
+ | 0.2615 | 23.91 | 5500 | 0.7823 | 0.3858 |
107
+ | 0.2615 | 24.35 | 5600 | 0.8312 | 0.3863 |
108
+ | 0.2615 | 24.78 | 5700 | 0.8427 | 0.3819 |
109
+ | 0.2615 | 25.22 | 5800 | 0.8432 | 0.3802 |
110
+ | 0.2615 | 25.65 | 5900 | 0.8286 | 0.3794 |
111
+ | 0.2408 | 26.09 | 6000 | 0.8224 | 0.3824 |
112
+ | 0.2408 | 26.52 | 6100 | 0.8228 | 0.3823 |
113
+ | 0.2408 | 26.95 | 6200 | 0.8324 | 0.3795 |
114
+ | 0.2408 | 27.39 | 6300 | 0.8564 | 0.3744 |
115
+ | 0.2408 | 27.82 | 6400 | 0.8629 | 0.3774 |
116
+ | 0.2254 | 28.26 | 6500 | 0.8545 | 0.3778 |
117
+ | 0.2254 | 28.69 | 6600 | 0.8492 | 0.3767 |
118
+ | 0.2254 | 29.13 | 6700 | 0.8511 | 0.3751 |
119
+ | 0.2254 | 29.56 | 6800 | 0.8491 | 0.3753 |
120
+ | 0.2254 | 30.0 | 6900 | 0.8536 | 0.3737 |
121
 
122
 
123
  ### Framework versions