roberta-ner-uzbek / README.md
abduaziz's picture
End of training
a42c5df verified
metadata
library_name: transformers
language:
  - uz
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - risqaliyevds/uzbek_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Uzbek NER model
    results: []

Uzbek NER model

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the Uzbek Ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1421
  • Precision: 0.6071
  • Recall: 0.6482
  • F1: 0.6270
  • Accuracy: 0.9486

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1671 0.5758 150 0.1632 0.5260 0.6425 0.5785 0.9402
0.1453 1.1497 300 0.1481 0.5935 0.6191 0.6061 0.9467
0.134 1.7255 450 0.1449 0.5936 0.6216 0.6073 0.9480
0.1273 2.2994 600 0.1413 0.6217 0.6262 0.6239 0.9493
0.1258 2.8752 750 0.1421 0.6071 0.6482 0.6270 0.9486

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.1.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0