DDPS-all / deeplabv3plus_r101_singlestep /20230303_203803.log.json
aaronb's picture
Upload folder using huggingface_hub
6fa5e3d
raw
history blame
14.2 kB
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+c844fc6", "seed": 1819371145, "exp_name": "deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py", "mmseg_version": "0.30.0+c844fc6", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\nmodel = dict(\n type='EncoderDecoderFreeze',\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth',\n backbone=dict(\n type='ResNetV1cCustomInitWeights',\n depth=101,\n num_stages=4,\n out_indices=(0, 1, 2, 3),\n dilations=(1, 1, 2, 4),\n strides=(1, 2, 1, 1),\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n norm_eval=False,\n style='pytorch',\n contract_dilation=True,\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth'\n ),\n decode_head=dict(\n type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth',\n dim=256,\n out_dim=256,\n unet_channels=528,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n ignore_index=0,\n in_channels=2048,\n in_index=3,\n channels=512,\n dilations=(1, 12, 24, 36),\n c1_in_channels=256,\n c1_channels=48,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n auxiliary_head=None,\n train_cfg=dict(),\n test_cfg=dict(mode='whole'),\n freeze_parameters=['backbone', 'decode_head'])\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\ncheckpoint = 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth'\nwork_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 1819371145\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
{"mode": "train", "epoch": 1, "iter": 50, "lr": 1e-05, "memory": 39544, "data_time": 0.01566, "decode.loss_ce": 3.5336, "decode.acc_seg": 28.15875, "loss": 3.5336, "time": 0.56058}
{"mode": "train", "epoch": 1, "iter": 100, "lr": 1e-05, "memory": 39544, "data_time": 0.00705, "decode.loss_ce": 2.07009, "decode.acc_seg": 58.48949, "loss": 2.07009, "time": 0.2968}