Upload folder using huggingface_hub
Browse files- deeplabv3plus_r101_multistep/20230304_140016.log +0 -0
- deeplabv3plus_r101_multistep/20230304_140016.log.json +0 -0
- deeplabv3plus_r101_multistep/best_mIoU_iter_48000.pth +3 -0
- deeplabv3plus_r101_multistep/deeplabv3plus_r101-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune.py +195 -0
- deeplabv3plus_r101_multistep/iter_160000.pth +3 -0
- deeplabv3plus_r101_multistep/latest.pth +3 -0
- deeplabv3plus_r101_singlestep/20230303_203803.log +1100 -0
- deeplabv3plus_r101_singlestep/20230303_203803.log.json +3 -0
- deeplabv3plus_r101_singlestep/20230303_203941.log +0 -0
- deeplabv3plus_r101_singlestep/20230303_203941.log.json +0 -0
- deeplabv3plus_r101_singlestep/best_mIoU_iter_40000.pth +3 -0
- deeplabv3plus_r101_singlestep/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py +184 -0
- deeplabv3plus_r101_singlestep/iter_80000.pth +3 -0
- deeplabv3plus_r101_singlestep/latest.pth +3 -0
- deeplabv3plus_r50_multistep/20230303_205044.log +0 -0
- deeplabv3plus_r50_multistep/20230303_205044.log.json +0 -0
- deeplabv3plus_r50_multistep/best_mIoU_iter_48000.pth +3 -0
- deeplabv3plus_r50_multistep/deeplabv3plus_r50-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune.py +195 -0
- deeplabv3plus_r50_multistep/iter_160000.pth +3 -0
- deeplabv3plus_r50_multistep/latest.pth +3 -0
- deeplabv3plus_r50_singlestep/20230303_152127.log +0 -0
- deeplabv3plus_r50_singlestep/20230303_152127.log.json +0 -0
- deeplabv3plus_r50_singlestep/best_mIoU_iter_64000.pth +3 -0
- deeplabv3plus_r50_singlestep/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py +184 -0
- deeplabv3plus_r50_singlestep/iter_80000.pth +3 -0
- deeplabv3plus_r50_singlestep/latest.pth +3 -0
- segformer_b2_multistep/20230302_115140.log +0 -0
- segformer_b2_multistep/20230302_115140.log.json +0 -0
- segformer_b2_multistep/best_mIoU_iter_144000.pth +3 -0
- segformer_b2_multistep/eval_single_scale_20230303_091319.json +19 -0
- segformer_b2_multistep/iter_304000.pth +3 -0
- segformer_b2_multistep/latest.pth +3 -0
- segformer_b2_multistep/segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_t100.py +195 -0
- segformer_b2_singlestep/20230303_135933.log +1137 -0
- segformer_b2_singlestep/20230303_135933.log.json +1 -0
- segformer_b2_singlestep/iter_80000.pth +3 -0
- segformer_b2_singlestep/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py +184 -0
deeplabv3plus_r101_multistep/20230304_140016.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deeplabv3plus_r101_multistep/20230304_140016.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deeplabv3plus_r101_multistep/best_mIoU_iter_48000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e5393e98d1c209e19d4a67d05d4b36715040d293dde46b5441967899c2663aa
|
3 |
+
size 690868455
|
deeplabv3plus_r101_multistep/deeplabv3plus_r101-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
model = dict(
|
3 |
+
type='EncoderDecoderDiffusion',
|
4 |
+
pretrained=
|
5 |
+
'work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151/latest.pth',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1cCustomInitWeights',
|
8 |
+
depth=101,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadMultiStep',
|
19 |
+
pretrained=
|
20 |
+
'work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151/latest.pth',
|
21 |
+
dim=128,
|
22 |
+
out_dim=256,
|
23 |
+
unet_channels=528,
|
24 |
+
dim_mults=[1, 1, 1],
|
25 |
+
cat_embedding_dim=16,
|
26 |
+
ignore_index=0,
|
27 |
+
diffusion_timesteps=100,
|
28 |
+
collect_timesteps=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99],
|
29 |
+
in_channels=2048,
|
30 |
+
in_index=3,
|
31 |
+
channels=512,
|
32 |
+
dilations=(1, 12, 24, 36),
|
33 |
+
c1_in_channels=256,
|
34 |
+
c1_channels=48,
|
35 |
+
dropout_ratio=0.1,
|
36 |
+
num_classes=151,
|
37 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
38 |
+
align_corners=False,
|
39 |
+
loss_decode=dict(
|
40 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
41 |
+
auxiliary_head=None,
|
42 |
+
train_cfg=dict(),
|
43 |
+
test_cfg=dict(mode='whole'),
|
44 |
+
freeze_parameters=['backbone', 'decode_head'])
|
45 |
+
dataset_type = 'ADE20K151Dataset'
|
46 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
47 |
+
img_norm_cfg = dict(
|
48 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
49 |
+
crop_size = (512, 512)
|
50 |
+
train_pipeline = [
|
51 |
+
dict(type='LoadImageFromFile'),
|
52 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
53 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
54 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
55 |
+
dict(type='RandomFlip', prob=0.5),
|
56 |
+
dict(type='PhotoMetricDistortion'),
|
57 |
+
dict(
|
58 |
+
type='Normalize',
|
59 |
+
mean=[123.675, 116.28, 103.53],
|
60 |
+
std=[58.395, 57.12, 57.375],
|
61 |
+
to_rgb=True),
|
62 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
63 |
+
dict(type='DefaultFormatBundle'),
|
64 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
65 |
+
]
|
66 |
+
test_pipeline = [
|
67 |
+
dict(type='LoadImageFromFile'),
|
68 |
+
dict(
|
69 |
+
type='MultiScaleFlipAug',
|
70 |
+
img_scale=(2048, 512),
|
71 |
+
flip=False,
|
72 |
+
transforms=[
|
73 |
+
dict(type='Resize', keep_ratio=True),
|
74 |
+
dict(type='RandomFlip'),
|
75 |
+
dict(
|
76 |
+
type='Normalize',
|
77 |
+
mean=[123.675, 116.28, 103.53],
|
78 |
+
std=[58.395, 57.12, 57.375],
|
79 |
+
to_rgb=True),
|
80 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
81 |
+
dict(type='ImageToTensor', keys=['img']),
|
82 |
+
dict(type='Collect', keys=['img'])
|
83 |
+
])
|
84 |
+
]
|
85 |
+
data = dict(
|
86 |
+
samples_per_gpu=4,
|
87 |
+
workers_per_gpu=4,
|
88 |
+
train=dict(
|
89 |
+
type='ADE20K151Dataset',
|
90 |
+
data_root='data/ade/ADEChallengeData2016',
|
91 |
+
img_dir='images/training',
|
92 |
+
ann_dir='annotations/training',
|
93 |
+
pipeline=[
|
94 |
+
dict(type='LoadImageFromFile'),
|
95 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
96 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
97 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
98 |
+
dict(type='RandomFlip', prob=0.5),
|
99 |
+
dict(type='PhotoMetricDistortion'),
|
100 |
+
dict(
|
101 |
+
type='Normalize',
|
102 |
+
mean=[123.675, 116.28, 103.53],
|
103 |
+
std=[58.395, 57.12, 57.375],
|
104 |
+
to_rgb=True),
|
105 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
106 |
+
dict(type='DefaultFormatBundle'),
|
107 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
108 |
+
]),
|
109 |
+
val=dict(
|
110 |
+
type='ADE20K151Dataset',
|
111 |
+
data_root='data/ade/ADEChallengeData2016',
|
112 |
+
img_dir='images/validation',
|
113 |
+
ann_dir='annotations/validation',
|
114 |
+
pipeline=[
|
115 |
+
dict(type='LoadImageFromFile'),
|
116 |
+
dict(
|
117 |
+
type='MultiScaleFlipAug',
|
118 |
+
img_scale=(2048, 512),
|
119 |
+
flip=False,
|
120 |
+
transforms=[
|
121 |
+
dict(type='Resize', keep_ratio=True),
|
122 |
+
dict(type='RandomFlip'),
|
123 |
+
dict(
|
124 |
+
type='Normalize',
|
125 |
+
mean=[123.675, 116.28, 103.53],
|
126 |
+
std=[58.395, 57.12, 57.375],
|
127 |
+
to_rgb=True),
|
128 |
+
dict(
|
129 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
130 |
+
dict(type='ImageToTensor', keys=['img']),
|
131 |
+
dict(type='Collect', keys=['img'])
|
132 |
+
])
|
133 |
+
]),
|
134 |
+
test=dict(
|
135 |
+
type='ADE20K151Dataset',
|
136 |
+
data_root='data/ade/ADEChallengeData2016',
|
137 |
+
img_dir='images/validation',
|
138 |
+
ann_dir='annotations/validation',
|
139 |
+
pipeline=[
|
140 |
+
dict(type='LoadImageFromFile'),
|
141 |
+
dict(
|
142 |
+
type='MultiScaleFlipAug',
|
143 |
+
img_scale=(2048, 512),
|
144 |
+
flip=False,
|
145 |
+
transforms=[
|
146 |
+
dict(type='Resize', keep_ratio=True),
|
147 |
+
dict(type='RandomFlip'),
|
148 |
+
dict(
|
149 |
+
type='Normalize',
|
150 |
+
mean=[123.675, 116.28, 103.53],
|
151 |
+
std=[58.395, 57.12, 57.375],
|
152 |
+
to_rgb=True),
|
153 |
+
dict(
|
154 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
155 |
+
dict(type='ImageToTensor', keys=['img']),
|
156 |
+
dict(type='Collect', keys=['img'])
|
157 |
+
])
|
158 |
+
]))
|
159 |
+
log_config = dict(
|
160 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
161 |
+
dist_params = dict(backend='nccl')
|
162 |
+
log_level = 'INFO'
|
163 |
+
load_from = None
|
164 |
+
resume_from = None
|
165 |
+
workflow = [('train', 1)]
|
166 |
+
cudnn_benchmark = True
|
167 |
+
optimizer = dict(
|
168 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
169 |
+
optimizer_config = dict()
|
170 |
+
lr_config = dict(
|
171 |
+
policy='step',
|
172 |
+
warmup='linear',
|
173 |
+
warmup_iters=1000,
|
174 |
+
warmup_ratio=1e-06,
|
175 |
+
step=20000,
|
176 |
+
gamma=0.5,
|
177 |
+
min_lr=1e-06,
|
178 |
+
by_epoch=False)
|
179 |
+
runner = dict(type='IterBasedRunner', max_iters=160000)
|
180 |
+
checkpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)
|
181 |
+
evaluation = dict(
|
182 |
+
interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
183 |
+
checkpoint = 'work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151/latest.pth'
|
184 |
+
custom_hooks = [
|
185 |
+
dict(
|
186 |
+
type='ConstantMomentumEMAHook',
|
187 |
+
momentum=0.01,
|
188 |
+
interval=25,
|
189 |
+
eval_interval=16000,
|
190 |
+
auto_resume=True,
|
191 |
+
priority=49)
|
192 |
+
]
|
193 |
+
work_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune'
|
194 |
+
gpu_ids = range(0, 8)
|
195 |
+
auto_resume = True
|
deeplabv3plus_r101_multistep/iter_160000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a350e8dadbf9837bff8006fe636be260d1f824d9c45222b26abf968d72ec1ea
|
3 |
+
size 690868455
|
deeplabv3plus_r101_multistep/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a350e8dadbf9837bff8006fe636be260d1f824d9c45222b26abf968d72ec1ea
|
3 |
+
size 690868455
|
deeplabv3plus_r101_singlestep/20230303_203803.log
ADDED
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-03 20:38:03,065 - mmseg - INFO - Multi-processing start method is `None`
|
2 |
+
2023-03-03 20:38:03,078 - mmseg - INFO - OpenCV num_threads is `128
|
3 |
+
2023-03-03 20:38:03,078 - mmseg - INFO - OMP num threads is 1
|
4 |
+
2023-03-03 20:38:03,131 - mmseg - INFO - Environment info:
|
5 |
+
------------------------------------------------------------
|
6 |
+
sys.platform: linux
|
7 |
+
Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]
|
8 |
+
CUDA available: True
|
9 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
|
10 |
+
CUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch
|
11 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
12 |
+
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
|
13 |
+
PyTorch: 1.13.1
|
14 |
+
PyTorch compiling details: PyTorch built with:
|
15 |
+
- GCC 9.3
|
16 |
+
- C++ Version: 201402
|
17 |
+
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
|
18 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
19 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
20 |
+
- LAPACK is enabled (usually provided by MKL)
|
21 |
+
- NNPACK is enabled
|
22 |
+
- CPU capability usage: AVX2
|
23 |
+
- CUDA Runtime 11.6
|
24 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
25 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
26 |
+
- Magma 2.6.1
|
27 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
28 |
+
|
29 |
+
TorchVision: 0.14.1
|
30 |
+
OpenCV: 4.7.0
|
31 |
+
MMCV: 1.7.1
|
32 |
+
MMCV Compiler: GCC 9.3
|
33 |
+
MMCV CUDA Compiler: 11.6
|
34 |
+
MMSegmentation: 0.30.0+c844fc6
|
35 |
+
------------------------------------------------------------
|
36 |
+
|
37 |
+
2023-03-03 20:38:03,131 - mmseg - INFO - Distributed training: True
|
38 |
+
2023-03-03 20:38:03,834 - mmseg - INFO - Config:
|
39 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
40 |
+
model = dict(
|
41 |
+
type='EncoderDecoderFreeze',
|
42 |
+
pretrained=
|
43 |
+
'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth',
|
44 |
+
backbone=dict(
|
45 |
+
type='ResNetV1cCustomInitWeights',
|
46 |
+
depth=101,
|
47 |
+
num_stages=4,
|
48 |
+
out_indices=(0, 1, 2, 3),
|
49 |
+
dilations=(1, 1, 2, 4),
|
50 |
+
strides=(1, 2, 1, 1),
|
51 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
52 |
+
norm_eval=False,
|
53 |
+
style='pytorch',
|
54 |
+
contract_dilation=True),
|
55 |
+
decode_head=dict(
|
56 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',
|
57 |
+
pretrained=
|
58 |
+
'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth',
|
59 |
+
dim=256,
|
60 |
+
out_dim=256,
|
61 |
+
unet_channels=528,
|
62 |
+
dim_mults=[1, 1, 1],
|
63 |
+
cat_embedding_dim=16,
|
64 |
+
ignore_index=0,
|
65 |
+
in_channels=2048,
|
66 |
+
in_index=3,
|
67 |
+
channels=512,
|
68 |
+
dilations=(1, 12, 24, 36),
|
69 |
+
c1_in_channels=256,
|
70 |
+
c1_channels=48,
|
71 |
+
dropout_ratio=0.1,
|
72 |
+
num_classes=151,
|
73 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
74 |
+
align_corners=False,
|
75 |
+
loss_decode=dict(
|
76 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
77 |
+
auxiliary_head=None,
|
78 |
+
train_cfg=dict(),
|
79 |
+
test_cfg=dict(mode='whole'),
|
80 |
+
freeze_parameters=['backbone', 'decode_head'])
|
81 |
+
dataset_type = 'ADE20K151Dataset'
|
82 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
83 |
+
img_norm_cfg = dict(
|
84 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
85 |
+
crop_size = (512, 512)
|
86 |
+
train_pipeline = [
|
87 |
+
dict(type='LoadImageFromFile'),
|
88 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
89 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
90 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
91 |
+
dict(type='RandomFlip', prob=0.5),
|
92 |
+
dict(type='PhotoMetricDistortion'),
|
93 |
+
dict(
|
94 |
+
type='Normalize',
|
95 |
+
mean=[123.675, 116.28, 103.53],
|
96 |
+
std=[58.395, 57.12, 57.375],
|
97 |
+
to_rgb=True),
|
98 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
99 |
+
dict(type='DefaultFormatBundle'),
|
100 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
101 |
+
]
|
102 |
+
test_pipeline = [
|
103 |
+
dict(type='LoadImageFromFile'),
|
104 |
+
dict(
|
105 |
+
type='MultiScaleFlipAug',
|
106 |
+
img_scale=(2048, 512),
|
107 |
+
flip=False,
|
108 |
+
transforms=[
|
109 |
+
dict(type='Resize', keep_ratio=True),
|
110 |
+
dict(type='RandomFlip'),
|
111 |
+
dict(
|
112 |
+
type='Normalize',
|
113 |
+
mean=[123.675, 116.28, 103.53],
|
114 |
+
std=[58.395, 57.12, 57.375],
|
115 |
+
to_rgb=True),
|
116 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
117 |
+
dict(type='ImageToTensor', keys=['img']),
|
118 |
+
dict(type='Collect', keys=['img'])
|
119 |
+
])
|
120 |
+
]
|
121 |
+
data = dict(
|
122 |
+
samples_per_gpu=4,
|
123 |
+
workers_per_gpu=4,
|
124 |
+
train=dict(
|
125 |
+
type='ADE20K151Dataset',
|
126 |
+
data_root='data/ade/ADEChallengeData2016',
|
127 |
+
img_dir='images/training',
|
128 |
+
ann_dir='annotations/training',
|
129 |
+
pipeline=[
|
130 |
+
dict(type='LoadImageFromFile'),
|
131 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
132 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
133 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
134 |
+
dict(type='RandomFlip', prob=0.5),
|
135 |
+
dict(type='PhotoMetricDistortion'),
|
136 |
+
dict(
|
137 |
+
type='Normalize',
|
138 |
+
mean=[123.675, 116.28, 103.53],
|
139 |
+
std=[58.395, 57.12, 57.375],
|
140 |
+
to_rgb=True),
|
141 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
142 |
+
dict(type='DefaultFormatBundle'),
|
143 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
144 |
+
]),
|
145 |
+
val=dict(
|
146 |
+
type='ADE20K151Dataset',
|
147 |
+
data_root='data/ade/ADEChallengeData2016',
|
148 |
+
img_dir='images/validation',
|
149 |
+
ann_dir='annotations/validation',
|
150 |
+
pipeline=[
|
151 |
+
dict(type='LoadImageFromFile'),
|
152 |
+
dict(
|
153 |
+
type='MultiScaleFlipAug',
|
154 |
+
img_scale=(2048, 512),
|
155 |
+
flip=False,
|
156 |
+
transforms=[
|
157 |
+
dict(type='Resize', keep_ratio=True),
|
158 |
+
dict(type='RandomFlip'),
|
159 |
+
dict(
|
160 |
+
type='Normalize',
|
161 |
+
mean=[123.675, 116.28, 103.53],
|
162 |
+
std=[58.395, 57.12, 57.375],
|
163 |
+
to_rgb=True),
|
164 |
+
dict(
|
165 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
166 |
+
dict(type='ImageToTensor', keys=['img']),
|
167 |
+
dict(type='Collect', keys=['img'])
|
168 |
+
])
|
169 |
+
]),
|
170 |
+
test=dict(
|
171 |
+
type='ADE20K151Dataset',
|
172 |
+
data_root='data/ade/ADEChallengeData2016',
|
173 |
+
img_dir='images/validation',
|
174 |
+
ann_dir='annotations/validation',
|
175 |
+
pipeline=[
|
176 |
+
dict(type='LoadImageFromFile'),
|
177 |
+
dict(
|
178 |
+
type='MultiScaleFlipAug',
|
179 |
+
img_scale=(2048, 512),
|
180 |
+
flip=False,
|
181 |
+
transforms=[
|
182 |
+
dict(type='Resize', keep_ratio=True),
|
183 |
+
dict(type='RandomFlip'),
|
184 |
+
dict(
|
185 |
+
type='Normalize',
|
186 |
+
mean=[123.675, 116.28, 103.53],
|
187 |
+
std=[58.395, 57.12, 57.375],
|
188 |
+
to_rgb=True),
|
189 |
+
dict(
|
190 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
191 |
+
dict(type='ImageToTensor', keys=['img']),
|
192 |
+
dict(type='Collect', keys=['img'])
|
193 |
+
])
|
194 |
+
]))
|
195 |
+
log_config = dict(
|
196 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
197 |
+
dist_params = dict(backend='nccl')
|
198 |
+
log_level = 'INFO'
|
199 |
+
load_from = None
|
200 |
+
resume_from = None
|
201 |
+
workflow = [('train', 1)]
|
202 |
+
cudnn_benchmark = True
|
203 |
+
optimizer = dict(
|
204 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
205 |
+
optimizer_config = dict()
|
206 |
+
lr_config = dict(
|
207 |
+
policy='step',
|
208 |
+
warmup='linear',
|
209 |
+
warmup_iters=1000,
|
210 |
+
warmup_ratio=1e-06,
|
211 |
+
step=10000,
|
212 |
+
gamma=0.5,
|
213 |
+
min_lr=1e-06,
|
214 |
+
by_epoch=False)
|
215 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
216 |
+
checkpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)
|
217 |
+
evaluation = dict(
|
218 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
219 |
+
checkpoint = 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth'
|
220 |
+
work_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151'
|
221 |
+
gpu_ids = range(0, 8)
|
222 |
+
auto_resume = True
|
223 |
+
|
224 |
+
2023-03-03 20:38:08,218 - mmseg - INFO - Set random seed to 1819371145, deterministic: False
|
225 |
+
2023-03-03 20:38:09,698 - mmseg - INFO - Parameters in backbone freezed!
|
226 |
+
2023-03-03 20:38:09,699 - mmseg - INFO - Trainable parameters in DepthwiseSeparableASPPHeadUnetFCHeadSingleStep: ['unet.init_conv.weight', 'unet.init_conv.bias', 'unet.time_mlp.1.weight', 'unet.time_mlp.1.bias', 'unet.time_mlp.3.weight', 'unet.time_mlp.3.bias', 'unet.downs.0.0.mlp.1.weight', 'unet.downs.0.0.mlp.1.bias', 'unet.downs.0.0.block1.proj.weight', 'unet.downs.0.0.block1.proj.bias', 'unet.downs.0.0.block1.norm.weight', 'unet.downs.0.0.block1.norm.bias', 'unet.downs.0.0.block2.proj.weight', 'unet.downs.0.0.block2.proj.bias', 'unet.downs.0.0.block2.norm.weight', 'unet.downs.0.0.block2.norm.bias', 'unet.downs.0.1.mlp.1.weight', 'unet.downs.0.1.mlp.1.bias', 'unet.downs.0.1.block1.proj.weight', 'unet.downs.0.1.block1.proj.bias', 'unet.downs.0.1.block1.norm.weight', 'unet.downs.0.1.block1.norm.bias', 'unet.downs.0.1.block2.proj.weight', 'unet.downs.0.1.block2.proj.bias', 'unet.downs.0.1.block2.norm.weight', 'unet.downs.0.1.block2.norm.bias', 'unet.downs.0.2.fn.fn.to_qkv.weight', 'unet.downs.0.2.fn.fn.to_out.0.weight', 'unet.downs.0.2.fn.fn.to_out.0.bias', 'unet.downs.0.2.fn.fn.to_out.1.g', 'unet.downs.0.2.fn.norm.g', 'unet.downs.0.3.weight', 'unet.downs.0.3.bias', 'unet.downs.1.0.mlp.1.weight', 'unet.downs.1.0.mlp.1.bias', 'unet.downs.1.0.block1.proj.weight', 'unet.downs.1.0.block1.proj.bias', 'unet.downs.1.0.block1.norm.weight', 'unet.downs.1.0.block1.norm.bias', 'unet.downs.1.0.block2.proj.weight', 'unet.downs.1.0.block2.proj.bias', 'unet.downs.1.0.block2.norm.weight', 'unet.downs.1.0.block2.norm.bias', 'unet.downs.1.1.mlp.1.weight', 'unet.downs.1.1.mlp.1.bias', 'unet.downs.1.1.block1.proj.weight', 'unet.downs.1.1.block1.proj.bias', 'unet.downs.1.1.block1.norm.weight', 'unet.downs.1.1.block1.norm.bias', 'unet.downs.1.1.block2.proj.weight', 'unet.downs.1.1.block2.proj.bias', 'unet.downs.1.1.block2.norm.weight', 'unet.downs.1.1.block2.norm.bias', 'unet.downs.1.2.fn.fn.to_qkv.weight', 'unet.downs.1.2.fn.fn.to_out.0.weight', 'unet.downs.1.2.fn.fn.to_out.0.bias', 'unet.downs.1.2.fn.fn.to_out.1.g', 'unet.downs.1.2.fn.norm.g', 'unet.downs.1.3.weight', 'unet.downs.1.3.bias', 'unet.downs.2.0.mlp.1.weight', 'unet.downs.2.0.mlp.1.bias', 'unet.downs.2.0.block1.proj.weight', 'unet.downs.2.0.block1.proj.bias', 'unet.downs.2.0.block1.norm.weight', 'unet.downs.2.0.block1.norm.bias', 'unet.downs.2.0.block2.proj.weight', 'unet.downs.2.0.block2.proj.bias', 'unet.downs.2.0.block2.norm.weight', 'unet.downs.2.0.block2.norm.bias', 'unet.downs.2.1.mlp.1.weight', 'unet.downs.2.1.mlp.1.bias', 'unet.downs.2.1.block1.proj.weight', 'unet.downs.2.1.block1.proj.bias', 'unet.downs.2.1.block1.norm.weight', 'unet.downs.2.1.block1.norm.bias', 'unet.downs.2.1.block2.proj.weight', 'unet.downs.2.1.block2.proj.bias', 'unet.downs.2.1.block2.norm.weight', 'unet.downs.2.1.block2.norm.bias', 'unet.downs.2.2.fn.fn.to_qkv.weight', 'unet.downs.2.2.fn.fn.to_out.0.weight', 'unet.downs.2.2.fn.fn.to_out.0.bias', 'unet.downs.2.2.fn.fn.to_out.1.g', 'unet.downs.2.2.fn.norm.g', 'unet.downs.2.3.weight', 'unet.downs.2.3.bias', 'unet.ups.0.0.mlp.1.weight', 'unet.ups.0.0.mlp.1.bias', 'unet.ups.0.0.block1.proj.weight', 'unet.ups.0.0.block1.proj.bias', 'unet.ups.0.0.block1.norm.weight', 'unet.ups.0.0.block1.norm.bias', 'unet.ups.0.0.block2.proj.weight', 'unet.ups.0.0.block2.proj.bias', 'unet.ups.0.0.block2.norm.weight', 'unet.ups.0.0.block2.norm.bias', 'unet.ups.0.0.res_conv.weight', 'unet.ups.0.0.res_conv.bias', 'unet.ups.0.1.mlp.1.weight', 'unet.ups.0.1.mlp.1.bias', 'unet.ups.0.1.block1.proj.weight', 'unet.ups.0.1.block1.proj.bias', 'unet.ups.0.1.block1.norm.weight', 'unet.ups.0.1.block1.norm.bias', 'unet.ups.0.1.block2.proj.weight', 'unet.ups.0.1.block2.proj.bias', 'unet.ups.0.1.block2.norm.weight', 'unet.ups.0.1.block2.norm.bias', 'unet.ups.0.1.res_conv.weight', 'unet.ups.0.1.res_conv.bias', 'unet.ups.0.2.fn.fn.to_qkv.weight', 'unet.ups.0.2.fn.fn.to_out.0.weight', 'unet.ups.0.2.fn.fn.to_out.0.bias', 'unet.ups.0.2.fn.fn.to_out.1.g', 'unet.ups.0.2.fn.norm.g', 'unet.ups.0.3.1.weight', 'unet.ups.0.3.1.bias', 'unet.ups.1.0.mlp.1.weight', 'unet.ups.1.0.mlp.1.bias', 'unet.ups.1.0.block1.proj.weight', 'unet.ups.1.0.block1.proj.bias', 'unet.ups.1.0.block1.norm.weight', 'unet.ups.1.0.block1.norm.bias', 'unet.ups.1.0.block2.proj.weight', 'unet.ups.1.0.block2.proj.bias', 'unet.ups.1.0.block2.norm.weight', 'unet.ups.1.0.block2.norm.bias', 'unet.ups.1.0.res_conv.weight', 'unet.ups.1.0.res_conv.bias', 'unet.ups.1.1.mlp.1.weight', 'unet.ups.1.1.mlp.1.bias', 'unet.ups.1.1.block1.proj.weight', 'unet.ups.1.1.block1.proj.bias', 'unet.ups.1.1.block1.norm.weight', 'unet.ups.1.1.block1.norm.bias', 'unet.ups.1.1.block2.proj.weight', 'unet.ups.1.1.block2.proj.bias', 'unet.ups.1.1.block2.norm.weight', 'unet.ups.1.1.block2.norm.bias', 'unet.ups.1.1.res_conv.weight', 'unet.ups.1.1.res_conv.bias', 'unet.ups.1.2.fn.fn.to_qkv.weight', 'unet.ups.1.2.fn.fn.to_out.0.weight', 'unet.ups.1.2.fn.fn.to_out.0.bias', 'unet.ups.1.2.fn.fn.to_out.1.g', 'unet.ups.1.2.fn.norm.g', 'unet.ups.1.3.1.weight', 'unet.ups.1.3.1.bias', 'unet.ups.2.0.mlp.1.weight', 'unet.ups.2.0.mlp.1.bias', 'unet.ups.2.0.block1.proj.weight', 'unet.ups.2.0.block1.proj.bias', 'unet.ups.2.0.block1.norm.weight', 'unet.ups.2.0.block1.norm.bias', 'unet.ups.2.0.block2.proj.weight', 'unet.ups.2.0.block2.proj.bias', 'unet.ups.2.0.block2.norm.weight', 'unet.ups.2.0.block2.norm.bias', 'unet.ups.2.0.res_conv.weight', 'unet.ups.2.0.res_conv.bias', 'unet.ups.2.1.mlp.1.weight', 'unet.ups.2.1.mlp.1.bias', 'unet.ups.2.1.block1.proj.weight', 'unet.ups.2.1.block1.proj.bias', 'unet.ups.2.1.block1.norm.weight', 'unet.ups.2.1.block1.norm.bias', 'unet.ups.2.1.block2.proj.weight', 'unet.ups.2.1.block2.proj.bias', 'unet.ups.2.1.block2.norm.weight', 'unet.ups.2.1.block2.norm.bias', 'unet.ups.2.1.res_conv.weight', 'unet.ups.2.1.res_conv.bias', 'unet.ups.2.2.fn.fn.to_qkv.weight', 'unet.ups.2.2.fn.fn.to_out.0.weight', 'unet.ups.2.2.fn.fn.to_out.0.bias', 'unet.ups.2.2.fn.fn.to_out.1.g', 'unet.ups.2.2.fn.norm.g', 'unet.ups.2.3.weight', 'unet.ups.2.3.bias', 'unet.mid_block1.mlp.1.weight', 'unet.mid_block1.mlp.1.bias', 'unet.mid_block1.block1.proj.weight', 'unet.mid_block1.block1.proj.bias', 'unet.mid_block1.block1.norm.weight', 'unet.mid_block1.block1.norm.bias', 'unet.mid_block1.block2.proj.weight', 'unet.mid_block1.block2.proj.bias', 'unet.mid_block1.block2.norm.weight', 'unet.mid_block1.block2.norm.bias', 'unet.mid_attn.fn.fn.to_qkv.weight', 'unet.mid_attn.fn.fn.to_out.weight', 'unet.mid_attn.fn.fn.to_out.bias', 'unet.mid_attn.fn.norm.g', 'unet.mid_block2.mlp.1.weight', 'unet.mid_block2.mlp.1.bias', 'unet.mid_block2.block1.proj.weight', 'unet.mid_block2.block1.proj.bias', 'unet.mid_block2.block1.norm.weight', 'unet.mid_block2.block1.norm.bias', 'unet.mid_block2.block2.proj.weight', 'unet.mid_block2.block2.proj.bias', 'unet.mid_block2.block2.norm.weight', 'unet.mid_block2.block2.norm.bias', 'unet.final_res_block.mlp.1.weight', 'unet.final_res_block.mlp.1.bias', 'unet.final_res_block.block1.proj.weight', 'unet.final_res_block.block1.proj.bias', 'unet.final_res_block.block1.norm.weight', 'unet.final_res_block.block1.norm.bias', 'unet.final_res_block.block2.proj.weight', 'unet.final_res_block.block2.proj.bias', 'unet.final_res_block.block2.norm.weight', 'unet.final_res_block.block2.norm.bias', 'unet.final_res_block.res_conv.weight', 'unet.final_res_block.res_conv.bias', 'unet.final_conv.weight', 'unet.final_conv.bias', 'conv_seg_new.weight', 'conv_seg_new.bias']
|
227 |
+
2023-03-03 20:38:09,699 - mmseg - INFO - Parameters in decode_head freezed!
|
228 |
+
2023-03-03 20:38:09,741 - mmseg - INFO - load checkpoint from local path: pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth
|
229 |
+
2023-03-03 20:38:10,251 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
230 |
+
|
231 |
+
unexpected key in source state_dict: decode_head.conv_seg.weight, decode_head.conv_seg.bias, decode_head.image_pool.1.conv.weight, decode_head.image_pool.1.bn.weight, decode_head.image_pool.1.bn.bias, decode_head.image_pool.1.bn.running_mean, decode_head.image_pool.1.bn.running_var, decode_head.image_pool.1.bn.num_batches_tracked, decode_head.aspp_modules.0.conv.weight, decode_head.aspp_modules.0.bn.weight, decode_head.aspp_modules.0.bn.bias, decode_head.aspp_modules.0.bn.running_mean, decode_head.aspp_modules.0.bn.running_var, decode_head.aspp_modules.0.bn.num_batches_tracked, decode_head.aspp_modules.1.depthwise_conv.conv.weight, decode_head.aspp_modules.1.depthwise_conv.bn.weight, decode_head.aspp_modules.1.depthwise_conv.bn.bias, decode_head.aspp_modules.1.depthwise_conv.bn.running_mean, decode_head.aspp_modules.1.depthwise_conv.bn.running_var, decode_head.aspp_modules.1.depthwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.1.pointwise_conv.conv.weight, decode_head.aspp_modules.1.pointwise_conv.bn.weight, decode_head.aspp_modules.1.pointwise_conv.bn.bias, decode_head.aspp_modules.1.pointwise_conv.bn.running_mean, decode_head.aspp_modules.1.pointwise_conv.bn.running_var, decode_head.aspp_modules.1.pointwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.2.depthwise_conv.conv.weight, decode_head.aspp_modules.2.depthwise_conv.bn.weight, decode_head.aspp_modules.2.depthwise_conv.bn.bias, decode_head.aspp_modules.2.depthwise_conv.bn.running_mean, decode_head.aspp_modules.2.depthwise_conv.bn.running_var, decode_head.aspp_modules.2.depthwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.2.pointwise_conv.conv.weight, decode_head.aspp_modules.2.pointwise_conv.bn.weight, decode_head.aspp_modules.2.pointwise_conv.bn.bias, decode_head.aspp_modules.2.pointwise_conv.bn.running_mean, decode_head.aspp_modules.2.pointwise_conv.bn.running_var, decode_head.aspp_modules.2.pointwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.3.depthwise_conv.conv.weight, decode_head.aspp_modules.3.depthwise_conv.bn.weight, decode_head.aspp_modules.3.depthwise_conv.bn.bias, decode_head.aspp_modules.3.depthwise_conv.bn.running_mean, decode_head.aspp_modules.3.depthwise_conv.bn.running_var, decode_head.aspp_modules.3.depthwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.3.pointwise_conv.conv.weight, decode_head.aspp_modules.3.pointwise_conv.bn.weight, decode_head.aspp_modules.3.pointwise_conv.bn.bias, decode_head.aspp_modules.3.pointwise_conv.bn.running_mean, decode_head.aspp_modules.3.pointwise_conv.bn.running_var, decode_head.aspp_modules.3.pointwise_conv.bn.num_batches_tracked, decode_head.bottleneck.conv.weight, decode_head.bottleneck.bn.weight, decode_head.bottleneck.bn.bias, decode_head.bottleneck.bn.running_mean, decode_head.bottleneck.bn.running_var, decode_head.bottleneck.bn.num_batches_tracked, decode_head.c1_bottleneck.conv.weight, decode_head.c1_bottleneck.bn.weight, decode_head.c1_bottleneck.bn.bias, decode_head.c1_bottleneck.bn.running_mean, decode_head.c1_bottleneck.bn.running_var, decode_head.c1_bottleneck.bn.num_batches_tracked, decode_head.sep_bottleneck.0.depthwise_conv.conv.weight, decode_head.sep_bottleneck.0.depthwise_conv.bn.weight, decode_head.sep_bottleneck.0.depthwise_conv.bn.bias, decode_head.sep_bottleneck.0.depthwise_conv.bn.running_mean, decode_head.sep_bottleneck.0.depthwise_conv.bn.running_var, decode_head.sep_bottleneck.0.depthwise_conv.bn.num_batches_tracked, decode_head.sep_bottleneck.0.pointwise_conv.conv.weight, decode_head.sep_bottleneck.0.pointwise_conv.bn.weight, decode_head.sep_bottleneck.0.pointwise_conv.bn.bias, decode_head.sep_bottleneck.0.pointwise_conv.bn.running_mean, decode_head.sep_bottleneck.0.pointwise_conv.bn.running_var, decode_head.sep_bottleneck.0.pointwise_conv.bn.num_batches_tracked, decode_head.sep_bottleneck.1.depthwise_conv.conv.weight, decode_head.sep_bottleneck.1.depthwise_conv.bn.weight, decode_head.sep_bottleneck.1.depthwise_conv.bn.bias, decode_head.sep_bottleneck.1.depthwise_conv.bn.running_mean, decode_head.sep_bottleneck.1.depthwise_conv.bn.running_var, decode_head.sep_bottleneck.1.depthwise_conv.bn.num_batches_tracked, decode_head.sep_bottleneck.1.pointwise_conv.conv.weight, decode_head.sep_bottleneck.1.pointwise_conv.bn.weight, decode_head.sep_bottleneck.1.pointwise_conv.bn.bias, decode_head.sep_bottleneck.1.pointwise_conv.bn.running_mean, decode_head.sep_bottleneck.1.pointwise_conv.bn.running_var, decode_head.sep_bottleneck.1.pointwise_conv.bn.num_batches_tracked, auxiliary_head.conv_seg.weight, auxiliary_head.conv_seg.bias, auxiliary_head.convs.0.conv.weight, auxiliary_head.convs.0.bn.weight, auxiliary_head.convs.0.bn.bias, auxiliary_head.convs.0.bn.running_mean, auxiliary_head.convs.0.bn.running_var, auxiliary_head.convs.0.bn.num_batches_tracked
|
232 |
+
|
233 |
+
2023-03-03 20:38:10,285 - mmseg - INFO - load checkpoint from local path: pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth
|
234 |
+
2023-03-03 20:38:10,813 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
235 |
+
|
236 |
+
unexpected key in source state_dict: backbone.stem.0.weight, backbone.stem.1.weight, backbone.stem.1.bias, backbone.stem.1.running_mean, backbone.stem.1.running_var, backbone.stem.1.num_batches_tracked, backbone.stem.3.weight, backbone.stem.4.weight, backbone.stem.4.bias, backbone.stem.4.running_mean, backbone.stem.4.running_var, backbone.stem.4.num_batches_tracked, backbone.stem.6.weight, backbone.stem.7.weight, backbone.stem.7.bias, backbone.stem.7.running_mean, backbone.stem.7.running_var, backbone.stem.7.num_batches_tracked, backbone.layer1.0.conv1.weight, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.num_batches_tracked, backbone.layer1.0.conv2.weight, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.num_batches_tracked, backbone.layer1.0.conv3.weight, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.num_batches_tracked, backbone.layer1.0.downsample.0.weight, backbone.layer1.0.downsample.1.weight, backbone.layer1.0.downsample.1.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.0.downsample.1.num_batches_tracked, backbone.layer1.1.conv1.weight, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.num_batches_tracked, backbone.layer1.1.conv2.weight, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.num_batches_tracked, backbone.layer1.1.conv3.weight, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.num_batches_tracked, backbone.layer1.2.conv1.weight, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.num_batches_tracked, backbone.layer1.2.conv2.weight, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.num_batches_tracked, backbone.layer1.2.conv3.weight, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.num_batches_tracked, backbone.layer2.0.conv1.weight, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.num_batches_tracked, backbone.layer2.0.conv2.weight, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.num_batches_tracked, backbone.layer2.0.conv3.weight, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.num_batches_tracked, backbone.layer2.0.downsample.0.weight, backbone.layer2.0.downsample.1.weight, backbone.layer2.0.downsample.1.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.0.downsample.1.num_batches_tracked, backbone.layer2.1.conv1.weight, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.num_batches_tracked, backbone.layer2.1.conv2.weight, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.num_batches_tracked, backbone.layer2.1.conv3.weight, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.num_batches_tracked, backbone.layer2.2.conv1.weight, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.num_batches_tracked, backbone.layer2.2.conv2.weight, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.num_batches_tracked, backbone.layer2.2.conv3.weight, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.num_batches_tracked, backbone.layer2.3.conv1.weight, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.num_batches_tracked, backbone.layer2.3.conv2.weight, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.num_batches_tracked, backbone.layer2.3.conv3.weight, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.num_batches_tracked, backbone.layer3.0.conv1.weight, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.num_batches_tracked, backbone.layer3.0.conv2.weight, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.num_batches_tracked, backbone.layer3.0.conv3.weight, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.num_batches_tracked, backbone.layer3.0.downsample.0.weight, backbone.layer3.0.downsample.1.weight, backbone.layer3.0.downsample.1.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.0.downsample.1.num_batches_tracked, backbone.layer3.1.conv1.weight, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.num_batches_tracked, backbone.layer3.1.conv2.weight, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.num_batches_tracked, backbone.layer3.1.conv3.weight, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.num_batches_tracked, backbone.layer3.2.conv1.weight, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.num_batches_tracked, backbone.layer3.2.conv2.weight, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.num_batches_tracked, backbone.layer3.2.conv3.weight, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.num_batches_tracked, backbone.layer3.3.conv1.weight, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.num_batches_tracked, backbone.layer3.3.conv2.weight, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.num_batches_tracked, backbone.layer3.3.conv3.weight, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.num_batches_tracked, backbone.layer3.4.conv1.weight, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.num_batches_tracked, backbone.layer3.4.conv2.weight, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.num_batches_tracked, backbone.layer3.4.conv3.weight, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.num_batches_tracked, backbone.layer3.5.conv1.weight, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.num_batches_tracked, backbone.layer3.5.conv2.weight, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.num_batches_tracked, backbone.layer3.5.conv3.weight, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.num_batches_tracked, backbone.layer3.6.conv1.weight, backbone.layer3.6.bn1.weight, backbone.layer3.6.bn1.bias, backbone.layer3.6.bn1.running_mean, backbone.layer3.6.bn1.running_var, backbone.layer3.6.bn1.num_batches_tracked, backbone.layer3.6.conv2.weight, backbone.layer3.6.bn2.weight, backbone.layer3.6.bn2.bias, backbone.layer3.6.bn2.running_mean, backbone.layer3.6.bn2.running_var, backbone.layer3.6.bn2.num_batches_tracked, backbone.layer3.6.conv3.weight, backbone.layer3.6.bn3.weight, backbone.layer3.6.bn3.bias, backbone.layer3.6.bn3.running_mean, backbone.layer3.6.bn3.running_var, backbone.layer3.6.bn3.num_batches_tracked, backbone.layer3.7.conv1.weight, backbone.layer3.7.bn1.weight, backbone.layer3.7.bn1.bias, backbone.layer3.7.bn1.running_mean, backbone.layer3.7.bn1.running_var, backbone.layer3.7.bn1.num_batches_tracked, backbone.layer3.7.conv2.weight, backbone.layer3.7.bn2.weight, backbone.layer3.7.bn2.bias, backbone.layer3.7.bn2.running_mean, backbone.layer3.7.bn2.running_var, backbone.layer3.7.bn2.num_batches_tracked, backbone.layer3.7.conv3.weight, backbone.layer3.7.bn3.weight, backbone.layer3.7.bn3.bias, backbone.layer3.7.bn3.running_mean, backbone.layer3.7.bn3.running_var, backbone.layer3.7.bn3.num_batches_tracked, backbone.layer3.8.conv1.weight, backbone.layer3.8.bn1.weight, backbone.layer3.8.bn1.bias, backbone.layer3.8.bn1.running_mean, backbone.layer3.8.bn1.running_var, backbone.layer3.8.bn1.num_batches_tracked, backbone.layer3.8.conv2.weight, backbone.layer3.8.bn2.weight, backbone.layer3.8.bn2.bias, backbone.layer3.8.bn2.running_mean, backbone.layer3.8.bn2.running_var, backbone.layer3.8.bn2.num_batches_tracked, backbone.layer3.8.conv3.weight, backbone.layer3.8.bn3.weight, backbone.layer3.8.bn3.bias, backbone.layer3.8.bn3.running_mean, backbone.layer3.8.bn3.running_var, backbone.layer3.8.bn3.num_batches_tracked, backbone.layer3.9.conv1.weight, backbone.layer3.9.bn1.weight, backbone.layer3.9.bn1.bias, backbone.layer3.9.bn1.running_mean, backbone.layer3.9.bn1.running_var, backbone.layer3.9.bn1.num_batches_tracked, backbone.layer3.9.conv2.weight, backbone.layer3.9.bn2.weight, backbone.layer3.9.bn2.bias, backbone.layer3.9.bn2.running_mean, backbone.layer3.9.bn2.running_var, backbone.layer3.9.bn2.num_batches_tracked, backbone.layer3.9.conv3.weight, backbone.layer3.9.bn3.weight, backbone.layer3.9.bn3.bias, backbone.layer3.9.bn3.running_mean, backbone.layer3.9.bn3.running_var, backbone.layer3.9.bn3.num_batches_tracked, backbone.layer3.10.conv1.weight, backbone.layer3.10.bn1.weight, backbone.layer3.10.bn1.bias, backbone.layer3.10.bn1.running_mean, backbone.layer3.10.bn1.running_var, backbone.layer3.10.bn1.num_batches_tracked, backbone.layer3.10.conv2.weight, backbone.layer3.10.bn2.weight, backbone.layer3.10.bn2.bias, backbone.layer3.10.bn2.running_mean, backbone.layer3.10.bn2.running_var, backbone.layer3.10.bn2.num_batches_tracked, backbone.layer3.10.conv3.weight, backbone.layer3.10.bn3.weight, backbone.layer3.10.bn3.bias, backbone.layer3.10.bn3.running_mean, backbone.layer3.10.bn3.running_var, backbone.layer3.10.bn3.num_batches_tracked, backbone.layer3.11.conv1.weight, backbone.layer3.11.bn1.weight, backbone.layer3.11.bn1.bias, backbone.layer3.11.bn1.running_mean, backbone.layer3.11.bn1.running_var, backbone.layer3.11.bn1.num_batches_tracked, backbone.layer3.11.conv2.weight, backbone.layer3.11.bn2.weight, backbone.layer3.11.bn2.bias, backbone.layer3.11.bn2.running_mean, backbone.layer3.11.bn2.running_var, backbone.layer3.11.bn2.num_batches_tracked, backbone.layer3.11.conv3.weight, backbone.layer3.11.bn3.weight, backbone.layer3.11.bn3.bias, backbone.layer3.11.bn3.running_mean, backbone.layer3.11.bn3.running_var, backbone.layer3.11.bn3.num_batches_tracked, backbone.layer3.12.conv1.weight, backbone.layer3.12.bn1.weight, backbone.layer3.12.bn1.bias, backbone.layer3.12.bn1.running_mean, backbone.layer3.12.bn1.running_var, backbone.layer3.12.bn1.num_batches_tracked, backbone.layer3.12.conv2.weight, backbone.layer3.12.bn2.weight, backbone.layer3.12.bn2.bias, backbone.layer3.12.bn2.running_mean, backbone.layer3.12.bn2.running_var, backbone.layer3.12.bn2.num_batches_tracked, backbone.layer3.12.conv3.weight, backbone.layer3.12.bn3.weight, backbone.layer3.12.bn3.bias, backbone.layer3.12.bn3.running_mean, backbone.layer3.12.bn3.running_var, backbone.layer3.12.bn3.num_batches_tracked, backbone.layer3.13.conv1.weight, backbone.layer3.13.bn1.weight, backbone.layer3.13.bn1.bias, backbone.layer3.13.bn1.running_mean, backbone.layer3.13.bn1.running_var, backbone.layer3.13.bn1.num_batches_tracked, backbone.layer3.13.conv2.weight, backbone.layer3.13.bn2.weight, backbone.layer3.13.bn2.bias, backbone.layer3.13.bn2.running_mean, backbone.layer3.13.bn2.running_var, backbone.layer3.13.bn2.num_batches_tracked, backbone.layer3.13.conv3.weight, backbone.layer3.13.bn3.weight, backbone.layer3.13.bn3.bias, backbone.layer3.13.bn3.running_mean, backbone.layer3.13.bn3.running_var, backbone.layer3.13.bn3.num_batches_tracked, backbone.layer3.14.conv1.weight, backbone.layer3.14.bn1.weight, backbone.layer3.14.bn1.bias, backbone.layer3.14.bn1.running_mean, backbone.layer3.14.bn1.running_var, backbone.layer3.14.bn1.num_batches_tracked, backbone.layer3.14.conv2.weight, backbone.layer3.14.bn2.weight, backbone.layer3.14.bn2.bias, backbone.layer3.14.bn2.running_mean, backbone.layer3.14.bn2.running_var, backbone.layer3.14.bn2.num_batches_tracked, backbone.layer3.14.conv3.weight, backbone.layer3.14.bn3.weight, backbone.layer3.14.bn3.bias, backbone.layer3.14.bn3.running_mean, backbone.layer3.14.bn3.running_var, backbone.layer3.14.bn3.num_batches_tracked, backbone.layer3.15.conv1.weight, backbone.layer3.15.bn1.weight, backbone.layer3.15.bn1.bias, backbone.layer3.15.bn1.running_mean, backbone.layer3.15.bn1.running_var, backbone.layer3.15.bn1.num_batches_tracked, backbone.layer3.15.conv2.weight, backbone.layer3.15.bn2.weight, backbone.layer3.15.bn2.bias, backbone.layer3.15.bn2.running_mean, backbone.layer3.15.bn2.running_var, backbone.layer3.15.bn2.num_batches_tracked, backbone.layer3.15.conv3.weight, backbone.layer3.15.bn3.weight, backbone.layer3.15.bn3.bias, backbone.layer3.15.bn3.running_mean, backbone.layer3.15.bn3.running_var, backbone.layer3.15.bn3.num_batches_tracked, backbone.layer3.16.conv1.weight, backbone.layer3.16.bn1.weight, backbone.layer3.16.bn1.bias, backbone.layer3.16.bn1.running_mean, backbone.layer3.16.bn1.running_var, backbone.layer3.16.bn1.num_batches_tracked, backbone.layer3.16.conv2.weight, backbone.layer3.16.bn2.weight, backbone.layer3.16.bn2.bias, backbone.layer3.16.bn2.running_mean, backbone.layer3.16.bn2.running_var, backbone.layer3.16.bn2.num_batches_tracked, backbone.layer3.16.conv3.weight, backbone.layer3.16.bn3.weight, backbone.layer3.16.bn3.bias, backbone.layer3.16.bn3.running_mean, backbone.layer3.16.bn3.running_var, backbone.layer3.16.bn3.num_batches_tracked, backbone.layer3.17.conv1.weight, backbone.layer3.17.bn1.weight, backbone.layer3.17.bn1.bias, backbone.layer3.17.bn1.running_mean, backbone.layer3.17.bn1.running_var, backbone.layer3.17.bn1.num_batches_tracked, backbone.layer3.17.conv2.weight, backbone.layer3.17.bn2.weight, backbone.layer3.17.bn2.bias, backbone.layer3.17.bn2.running_mean, backbone.layer3.17.bn2.running_var, backbone.layer3.17.bn2.num_batches_tracked, backbone.layer3.17.conv3.weight, backbone.layer3.17.bn3.weight, backbone.layer3.17.bn3.bias, backbone.layer3.17.bn3.running_mean, backbone.layer3.17.bn3.running_var, backbone.layer3.17.bn3.num_batches_tracked, backbone.layer3.18.conv1.weight, backbone.layer3.18.bn1.weight, backbone.layer3.18.bn1.bias, backbone.layer3.18.bn1.running_mean, backbone.layer3.18.bn1.running_var, backbone.layer3.18.bn1.num_batches_tracked, backbone.layer3.18.conv2.weight, backbone.layer3.18.bn2.weight, backbone.layer3.18.bn2.bias, backbone.layer3.18.bn2.running_mean, backbone.layer3.18.bn2.running_var, backbone.layer3.18.bn2.num_batches_tracked, backbone.layer3.18.conv3.weight, backbone.layer3.18.bn3.weight, backbone.layer3.18.bn3.bias, backbone.layer3.18.bn3.running_mean, backbone.layer3.18.bn3.running_var, backbone.layer3.18.bn3.num_batches_tracked, backbone.layer3.19.conv1.weight, backbone.layer3.19.bn1.weight, backbone.layer3.19.bn1.bias, backbone.layer3.19.bn1.running_mean, backbone.layer3.19.bn1.running_var, backbone.layer3.19.bn1.num_batches_tracked, backbone.layer3.19.conv2.weight, backbone.layer3.19.bn2.weight, backbone.layer3.19.bn2.bias, backbone.layer3.19.bn2.running_mean, backbone.layer3.19.bn2.running_var, backbone.layer3.19.bn2.num_batches_tracked, backbone.layer3.19.conv3.weight, backbone.layer3.19.bn3.weight, backbone.layer3.19.bn3.bias, backbone.layer3.19.bn3.running_mean, backbone.layer3.19.bn3.running_var, backbone.layer3.19.bn3.num_batches_tracked, backbone.layer3.20.conv1.weight, backbone.layer3.20.bn1.weight, backbone.layer3.20.bn1.bias, backbone.layer3.20.bn1.running_mean, backbone.layer3.20.bn1.running_var, backbone.layer3.20.bn1.num_batches_tracked, backbone.layer3.20.conv2.weight, backbone.layer3.20.bn2.weight, backbone.layer3.20.bn2.bias, backbone.layer3.20.bn2.running_mean, backbone.layer3.20.bn2.running_var, backbone.layer3.20.bn2.num_batches_tracked, backbone.layer3.20.conv3.weight, backbone.layer3.20.bn3.weight, backbone.layer3.20.bn3.bias, backbone.layer3.20.bn3.running_mean, backbone.layer3.20.bn3.running_var, backbone.layer3.20.bn3.num_batches_tracked, backbone.layer3.21.conv1.weight, backbone.layer3.21.bn1.weight, backbone.layer3.21.bn1.bias, backbone.layer3.21.bn1.running_mean, backbone.layer3.21.bn1.running_var, backbone.layer3.21.bn1.num_batches_tracked, backbone.layer3.21.conv2.weight, backbone.layer3.21.bn2.weight, backbone.layer3.21.bn2.bias, backbone.layer3.21.bn2.running_mean, backbone.layer3.21.bn2.running_var, backbone.layer3.21.bn2.num_batches_tracked, backbone.layer3.21.conv3.weight, backbone.layer3.21.bn3.weight, backbone.layer3.21.bn3.bias, backbone.layer3.21.bn3.running_mean, backbone.layer3.21.bn3.running_var, backbone.layer3.21.bn3.num_batches_tracked, backbone.layer3.22.conv1.weight, backbone.layer3.22.bn1.weight, backbone.layer3.22.bn1.bias, backbone.layer3.22.bn1.running_mean, backbone.layer3.22.bn1.running_var, backbone.layer3.22.bn1.num_batches_tracked, backbone.layer3.22.conv2.weight, backbone.layer3.22.bn2.weight, backbone.layer3.22.bn2.bias, backbone.layer3.22.bn2.running_mean, backbone.layer3.22.bn2.running_var, backbone.layer3.22.bn2.num_batches_tracked, backbone.layer3.22.conv3.weight, backbone.layer3.22.bn3.weight, backbone.layer3.22.bn3.bias, backbone.layer3.22.bn3.running_mean, backbone.layer3.22.bn3.running_var, backbone.layer3.22.bn3.num_batches_tracked, backbone.layer4.0.conv1.weight, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.num_batches_tracked, backbone.layer4.0.conv2.weight, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.num_batches_tracked, backbone.layer4.0.conv3.weight, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.num_batches_tracked, backbone.layer4.0.downsample.0.weight, backbone.layer4.0.downsample.1.weight, backbone.layer4.0.downsample.1.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.0.downsample.1.num_batches_tracked, backbone.layer4.1.conv1.weight, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.num_batches_tracked, backbone.layer4.1.conv2.weight, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.num_batches_tracked, backbone.layer4.1.conv3.weight, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.num_batches_tracked, backbone.layer4.2.conv1.weight, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.num_batches_tracked, backbone.layer4.2.conv2.weight, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.num_batches_tracked, backbone.layer4.2.conv3.weight, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.num_batches_tracked, auxiliary_head.conv_seg.weight, auxiliary_head.conv_seg.bias, auxiliary_head.convs.0.conv.weight, auxiliary_head.convs.0.bn.weight, auxiliary_head.convs.0.bn.bias, auxiliary_head.convs.0.bn.running_mean, auxiliary_head.convs.0.bn.running_var, auxiliary_head.convs.0.bn.num_batches_tracked
|
237 |
+
|
238 |
+
missing keys in source state_dict: unet.init_conv.weight, unet.init_conv.bias, unet.time_mlp.1.weight, unet.time_mlp.1.bias, unet.time_mlp.3.weight, unet.time_mlp.3.bias, unet.downs.0.0.mlp.1.weight, unet.downs.0.0.mlp.1.bias, unet.downs.0.0.block1.proj.weight, unet.downs.0.0.block1.proj.bias, unet.downs.0.0.block1.norm.weight, unet.downs.0.0.block1.norm.bias, unet.downs.0.0.block2.proj.weight, unet.downs.0.0.block2.proj.bias, unet.downs.0.0.block2.norm.weight, unet.downs.0.0.block2.norm.bias, unet.downs.0.1.mlp.1.weight, unet.downs.0.1.mlp.1.bias, unet.downs.0.1.block1.proj.weight, unet.downs.0.1.block1.proj.bias, unet.downs.0.1.block1.norm.weight, unet.downs.0.1.block1.norm.bias, unet.downs.0.1.block2.proj.weight, unet.downs.0.1.block2.proj.bias, unet.downs.0.1.block2.norm.weight, unet.downs.0.1.block2.norm.bias, unet.downs.0.2.fn.fn.to_qkv.weight, unet.downs.0.2.fn.fn.to_out.0.weight, unet.downs.0.2.fn.fn.to_out.0.bias, unet.downs.0.2.fn.fn.to_out.1.g, unet.downs.0.2.fn.norm.g, unet.downs.0.3.weight, unet.downs.0.3.bias, unet.downs.1.0.mlp.1.weight, unet.downs.1.0.mlp.1.bias, unet.downs.1.0.block1.proj.weight, unet.downs.1.0.block1.proj.bias, unet.downs.1.0.block1.norm.weight, unet.downs.1.0.block1.norm.bias, unet.downs.1.0.block2.proj.weight, unet.downs.1.0.block2.proj.bias, unet.downs.1.0.block2.norm.weight, unet.downs.1.0.block2.norm.bias, unet.downs.1.1.mlp.1.weight, unet.downs.1.1.mlp.1.bias, unet.downs.1.1.block1.proj.weight, unet.downs.1.1.block1.proj.bias, unet.downs.1.1.block1.norm.weight, unet.downs.1.1.block1.norm.bias, unet.downs.1.1.block2.proj.weight, unet.downs.1.1.block2.proj.bias, unet.downs.1.1.block2.norm.weight, unet.downs.1.1.block2.norm.bias, unet.downs.1.2.fn.fn.to_qkv.weight, unet.downs.1.2.fn.fn.to_out.0.weight, unet.downs.1.2.fn.fn.to_out.0.bias, unet.downs.1.2.fn.fn.to_out.1.g, unet.downs.1.2.fn.norm.g, unet.downs.1.3.weight, unet.downs.1.3.bias, unet.downs.2.0.mlp.1.weight, unet.downs.2.0.mlp.1.bias, unet.downs.2.0.block1.proj.weight, unet.downs.2.0.block1.proj.bias, unet.downs.2.0.block1.norm.weight, unet.downs.2.0.block1.norm.bias, unet.downs.2.0.block2.proj.weight, unet.downs.2.0.block2.proj.bias, unet.downs.2.0.block2.norm.weight, unet.downs.2.0.block2.norm.bias, unet.downs.2.1.mlp.1.weight, unet.downs.2.1.mlp.1.bias, unet.downs.2.1.block1.proj.weight, unet.downs.2.1.block1.proj.bias, unet.downs.2.1.block1.norm.weight, unet.downs.2.1.block1.norm.bias, unet.downs.2.1.block2.proj.weight, unet.downs.2.1.block2.proj.bias, unet.downs.2.1.block2.norm.weight, unet.downs.2.1.block2.norm.bias, unet.downs.2.2.fn.fn.to_qkv.weight, unet.downs.2.2.fn.fn.to_out.0.weight, unet.downs.2.2.fn.fn.to_out.0.bias, unet.downs.2.2.fn.fn.to_out.1.g, unet.downs.2.2.fn.norm.g, unet.downs.2.3.weight, unet.downs.2.3.bias, unet.ups.0.0.mlp.1.weight, unet.ups.0.0.mlp.1.bias, unet.ups.0.0.block1.proj.weight, unet.ups.0.0.block1.proj.bias, unet.ups.0.0.block1.norm.weight, unet.ups.0.0.block1.norm.bias, unet.ups.0.0.block2.proj.weight, unet.ups.0.0.block2.proj.bias, unet.ups.0.0.block2.norm.weight, unet.ups.0.0.block2.norm.bias, unet.ups.0.0.res_conv.weight, unet.ups.0.0.res_conv.bias, unet.ups.0.1.mlp.1.weight, unet.ups.0.1.mlp.1.bias, unet.ups.0.1.block1.proj.weight, unet.ups.0.1.block1.proj.bias, unet.ups.0.1.block1.norm.weight, unet.ups.0.1.block1.norm.bias, unet.ups.0.1.block2.proj.weight, unet.ups.0.1.block2.proj.bias, unet.ups.0.1.block2.norm.weight, unet.ups.0.1.block2.norm.bias, unet.ups.0.1.res_conv.weight, unet.ups.0.1.res_conv.bias, unet.ups.0.2.fn.fn.to_qkv.weight, unet.ups.0.2.fn.fn.to_out.0.weight, unet.ups.0.2.fn.fn.to_out.0.bias, unet.ups.0.2.fn.fn.to_out.1.g, unet.ups.0.2.fn.norm.g, unet.ups.0.3.1.weight, unet.ups.0.3.1.bias, unet.ups.1.0.mlp.1.weight, unet.ups.1.0.mlp.1.bias, unet.ups.1.0.block1.proj.weight, unet.ups.1.0.block1.proj.bias, unet.ups.1.0.block1.norm.weight, unet.ups.1.0.block1.norm.bias, unet.ups.1.0.block2.proj.weight, unet.ups.1.0.block2.proj.bias, unet.ups.1.0.block2.norm.weight, unet.ups.1.0.block2.norm.bias, unet.ups.1.0.res_conv.weight, unet.ups.1.0.res_conv.bias, unet.ups.1.1.mlp.1.weight, unet.ups.1.1.mlp.1.bias, unet.ups.1.1.block1.proj.weight, unet.ups.1.1.block1.proj.bias, unet.ups.1.1.block1.norm.weight, unet.ups.1.1.block1.norm.bias, unet.ups.1.1.block2.proj.weight, unet.ups.1.1.block2.proj.bias, unet.ups.1.1.block2.norm.weight, unet.ups.1.1.block2.norm.bias, unet.ups.1.1.res_conv.weight, unet.ups.1.1.res_conv.bias, unet.ups.1.2.fn.fn.to_qkv.weight, unet.ups.1.2.fn.fn.to_out.0.weight, unet.ups.1.2.fn.fn.to_out.0.bias, unet.ups.1.2.fn.fn.to_out.1.g, unet.ups.1.2.fn.norm.g, unet.ups.1.3.1.weight, unet.ups.1.3.1.bias, unet.ups.2.0.mlp.1.weight, unet.ups.2.0.mlp.1.bias, unet.ups.2.0.block1.proj.weight, unet.ups.2.0.block1.proj.bias, unet.ups.2.0.block1.norm.weight, unet.ups.2.0.block1.norm.bias, unet.ups.2.0.block2.proj.weight, unet.ups.2.0.block2.proj.bias, unet.ups.2.0.block2.norm.weight, unet.ups.2.0.block2.norm.bias, unet.ups.2.0.res_conv.weight, unet.ups.2.0.res_conv.bias, unet.ups.2.1.mlp.1.weight, unet.ups.2.1.mlp.1.bias, unet.ups.2.1.block1.proj.weight, unet.ups.2.1.block1.proj.bias, unet.ups.2.1.block1.norm.weight, unet.ups.2.1.block1.norm.bias, unet.ups.2.1.block2.proj.weight, unet.ups.2.1.block2.proj.bias, unet.ups.2.1.block2.norm.weight, unet.ups.2.1.block2.norm.bias, unet.ups.2.1.res_conv.weight, unet.ups.2.1.res_conv.bias, unet.ups.2.2.fn.fn.to_qkv.weight, unet.ups.2.2.fn.fn.to_out.0.weight, unet.ups.2.2.fn.fn.to_out.0.bias, unet.ups.2.2.fn.fn.to_out.1.g, unet.ups.2.2.fn.norm.g, unet.ups.2.3.weight, unet.ups.2.3.bias, unet.mid_block1.mlp.1.weight, unet.mid_block1.mlp.1.bias, unet.mid_block1.block1.proj.weight, unet.mid_block1.block1.proj.bias, unet.mid_block1.block1.norm.weight, unet.mid_block1.block1.norm.bias, unet.mid_block1.block2.proj.weight, unet.mid_block1.block2.proj.bias, unet.mid_block1.block2.norm.weight, unet.mid_block1.block2.norm.bias, unet.mid_attn.fn.fn.to_qkv.weight, unet.mid_attn.fn.fn.to_out.weight, unet.mid_attn.fn.fn.to_out.bias, unet.mid_attn.fn.norm.g, unet.mid_block2.mlp.1.weight, unet.mid_block2.mlp.1.bias, unet.mid_block2.block1.proj.weight, unet.mid_block2.block1.proj.bias, unet.mid_block2.block1.norm.weight, unet.mid_block2.block1.norm.bias, unet.mid_block2.block2.proj.weight, unet.mid_block2.block2.proj.bias, unet.mid_block2.block2.norm.weight, unet.mid_block2.block2.norm.bias, unet.final_res_block.mlp.1.weight, unet.final_res_block.mlp.1.bias, unet.final_res_block.block1.proj.weight, unet.final_res_block.block1.proj.bias, unet.final_res_block.block1.norm.weight, unet.final_res_block.block1.norm.bias, unet.final_res_block.block2.proj.weight, unet.final_res_block.block2.proj.bias, unet.final_res_block.block2.norm.weight, unet.final_res_block.block2.norm.bias, unet.final_res_block.res_conv.weight, unet.final_res_block.res_conv.bias, unet.final_conv.weight, unet.final_conv.bias, conv_seg_new.weight, conv_seg_new.bias, embed.weight
|
239 |
+
|
240 |
+
2023-03-03 20:38:10,885 - mmseg - INFO - EncoderDecoderFreeze(
|
241 |
+
(backbone): ResNetV1cCustomInitWeights(
|
242 |
+
(stem): Sequential(
|
243 |
+
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
244 |
+
(1): SyncBatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
245 |
+
(2): ReLU(inplace=True)
|
246 |
+
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
247 |
+
(4): SyncBatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
248 |
+
(5): ReLU(inplace=True)
|
249 |
+
(6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
250 |
+
(7): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
251 |
+
(8): ReLU(inplace=True)
|
252 |
+
)
|
253 |
+
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
|
254 |
+
(layer1): ResLayer(
|
255 |
+
(0): Bottleneck(
|
256 |
+
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
257 |
+
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
258 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
259 |
+
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
260 |
+
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
261 |
+
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
262 |
+
(relu): ReLU(inplace=True)
|
263 |
+
(downsample): Sequential(
|
264 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
265 |
+
(1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(1): Bottleneck(
|
269 |
+
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
270 |
+
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
271 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
272 |
+
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
273 |
+
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
274 |
+
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
275 |
+
(relu): ReLU(inplace=True)
|
276 |
+
)
|
277 |
+
(2): Bottleneck(
|
278 |
+
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
279 |
+
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
280 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
281 |
+
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
282 |
+
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
283 |
+
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
284 |
+
(relu): ReLU(inplace=True)
|
285 |
+
)
|
286 |
+
)
|
287 |
+
(layer2): ResLayer(
|
288 |
+
(0): Bottleneck(
|
289 |
+
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
290 |
+
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
291 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
292 |
+
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
293 |
+
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
294 |
+
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
295 |
+
(relu): ReLU(inplace=True)
|
296 |
+
(downsample): Sequential(
|
297 |
+
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
298 |
+
(1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
299 |
+
)
|
300 |
+
)
|
301 |
+
(1): Bottleneck(
|
302 |
+
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
303 |
+
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
304 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
305 |
+
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
306 |
+
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
307 |
+
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
308 |
+
(relu): ReLU(inplace=True)
|
309 |
+
)
|
310 |
+
(2): Bottleneck(
|
311 |
+
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
312 |
+
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
313 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
314 |
+
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
315 |
+
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
316 |
+
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
317 |
+
(relu): ReLU(inplace=True)
|
318 |
+
)
|
319 |
+
(3): Bottleneck(
|
320 |
+
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
321 |
+
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
322 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
323 |
+
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
324 |
+
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
325 |
+
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
326 |
+
(relu): ReLU(inplace=True)
|
327 |
+
)
|
328 |
+
)
|
329 |
+
(layer3): ResLayer(
|
330 |
+
(0): Bottleneck(
|
331 |
+
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
332 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
333 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
334 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
335 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
336 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
337 |
+
(relu): ReLU(inplace=True)
|
338 |
+
(downsample): Sequential(
|
339 |
+
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
340 |
+
(1): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
341 |
+
)
|
342 |
+
)
|
343 |
+
(1): Bottleneck(
|
344 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
345 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
346 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
347 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
348 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
349 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
350 |
+
(relu): ReLU(inplace=True)
|
351 |
+
)
|
352 |
+
(2): Bottleneck(
|
353 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
354 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
355 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
356 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
357 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
358 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
359 |
+
(relu): ReLU(inplace=True)
|
360 |
+
)
|
361 |
+
(3): Bottleneck(
|
362 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
363 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
364 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
365 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
366 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
367 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
368 |
+
(relu): ReLU(inplace=True)
|
369 |
+
)
|
370 |
+
(4): Bottleneck(
|
371 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
372 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
373 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
374 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
375 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
376 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
377 |
+
(relu): ReLU(inplace=True)
|
378 |
+
)
|
379 |
+
(5): Bottleneck(
|
380 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
381 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
382 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
383 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
384 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
385 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
386 |
+
(relu): ReLU(inplace=True)
|
387 |
+
)
|
388 |
+
(6): Bottleneck(
|
389 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
390 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
391 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
392 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
393 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
394 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
395 |
+
(relu): ReLU(inplace=True)
|
396 |
+
)
|
397 |
+
(7): Bottleneck(
|
398 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
399 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
400 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
401 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
402 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
403 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
404 |
+
(relu): ReLU(inplace=True)
|
405 |
+
)
|
406 |
+
(8): Bottleneck(
|
407 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
408 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
409 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
410 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
411 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
412 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
413 |
+
(relu): ReLU(inplace=True)
|
414 |
+
)
|
415 |
+
(9): Bottleneck(
|
416 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
417 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
418 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
419 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
420 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
421 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
422 |
+
(relu): ReLU(inplace=True)
|
423 |
+
)
|
424 |
+
(10): Bottleneck(
|
425 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
426 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
427 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
428 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
429 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
430 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
431 |
+
(relu): ReLU(inplace=True)
|
432 |
+
)
|
433 |
+
(11): Bottleneck(
|
434 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
435 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
436 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
437 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
438 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
439 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
440 |
+
(relu): ReLU(inplace=True)
|
441 |
+
)
|
442 |
+
(12): Bottleneck(
|
443 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
444 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
445 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
446 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
447 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
448 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
449 |
+
(relu): ReLU(inplace=True)
|
450 |
+
)
|
451 |
+
(13): Bottleneck(
|
452 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
453 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
454 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
455 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
456 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
457 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
458 |
+
(relu): ReLU(inplace=True)
|
459 |
+
)
|
460 |
+
(14): Bottleneck(
|
461 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
462 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
463 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
464 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
465 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
466 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
467 |
+
(relu): ReLU(inplace=True)
|
468 |
+
)
|
469 |
+
(15): Bottleneck(
|
470 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
471 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
472 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
473 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
474 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
475 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
476 |
+
(relu): ReLU(inplace=True)
|
477 |
+
)
|
478 |
+
(16): Bottleneck(
|
479 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
480 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
481 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
482 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
483 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
484 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
485 |
+
(relu): ReLU(inplace=True)
|
486 |
+
)
|
487 |
+
(17): Bottleneck(
|
488 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
489 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
490 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
491 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
492 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
493 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
494 |
+
(relu): ReLU(inplace=True)
|
495 |
+
)
|
496 |
+
(18): Bottleneck(
|
497 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
498 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
499 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
500 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
501 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
502 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
503 |
+
(relu): ReLU(inplace=True)
|
504 |
+
)
|
505 |
+
(19): Bottleneck(
|
506 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
507 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
508 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
509 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
510 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
511 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
512 |
+
(relu): ReLU(inplace=True)
|
513 |
+
)
|
514 |
+
(20): Bottleneck(
|
515 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
516 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
517 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
518 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
519 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
520 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
521 |
+
(relu): ReLU(inplace=True)
|
522 |
+
)
|
523 |
+
(21): Bottleneck(
|
524 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
525 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
526 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
527 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
528 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
529 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
530 |
+
(relu): ReLU(inplace=True)
|
531 |
+
)
|
532 |
+
(22): Bottleneck(
|
533 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
534 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
535 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
536 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
537 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
538 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
539 |
+
(relu): ReLU(inplace=True)
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(layer4): ResLayer(
|
543 |
+
(0): Bottleneck(
|
544 |
+
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
545 |
+
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
546 |
+
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
547 |
+
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
548 |
+
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
549 |
+
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
550 |
+
(relu): ReLU(inplace=True)
|
551 |
+
(downsample): Sequential(
|
552 |
+
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
553 |
+
(1): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
554 |
+
)
|
555 |
+
)
|
556 |
+
(1): Bottleneck(
|
557 |
+
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
558 |
+
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
559 |
+
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)
|
560 |
+
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
561 |
+
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
562 |
+
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
563 |
+
(relu): ReLU(inplace=True)
|
564 |
+
)
|
565 |
+
(2): Bottleneck(
|
566 |
+
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
567 |
+
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
568 |
+
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)
|
569 |
+
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
570 |
+
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
571 |
+
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
572 |
+
(relu): ReLU(inplace=True)
|
573 |
+
)
|
574 |
+
)
|
575 |
+
)
|
576 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth'}
|
577 |
+
(decode_head): DepthwiseSeparableASPPHeadUnetFCHeadSingleStep(
|
578 |
+
input_transform=None, ignore_index=0, align_corners=False
|
579 |
+
(loss_decode): CrossEntropyLoss(avg_non_ignore=False)
|
580 |
+
(conv_seg): None
|
581 |
+
(dropout): Dropout2d(p=0.1, inplace=False)
|
582 |
+
(image_pool): Sequential(
|
583 |
+
(0): AdaptiveAvgPool2d(output_size=1)
|
584 |
+
(1): ConvModule(
|
585 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
586 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
587 |
+
(activate): ReLU(inplace=True)
|
588 |
+
)
|
589 |
+
)
|
590 |
+
(aspp_modules): DepthwiseSeparableASPPModule(
|
591 |
+
(0): ConvModule(
|
592 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
593 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
594 |
+
(activate): ReLU(inplace=True)
|
595 |
+
)
|
596 |
+
(1): DepthwiseSeparableConvModule(
|
597 |
+
(depthwise_conv): ConvModule(
|
598 |
+
(conv): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(12, 12), dilation=(12, 12), groups=2048, bias=False)
|
599 |
+
(bn): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
600 |
+
(activate): ReLU(inplace=True)
|
601 |
+
)
|
602 |
+
(pointwise_conv): ConvModule(
|
603 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
604 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
605 |
+
(activate): ReLU(inplace=True)
|
606 |
+
)
|
607 |
+
)
|
608 |
+
(2): DepthwiseSeparableConvModule(
|
609 |
+
(depthwise_conv): ConvModule(
|
610 |
+
(conv): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(24, 24), dilation=(24, 24), groups=2048, bias=False)
|
611 |
+
(bn): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
612 |
+
(activate): ReLU(inplace=True)
|
613 |
+
)
|
614 |
+
(pointwise_conv): ConvModule(
|
615 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
616 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
617 |
+
(activate): ReLU(inplace=True)
|
618 |
+
)
|
619 |
+
)
|
620 |
+
(3): DepthwiseSeparableConvModule(
|
621 |
+
(depthwise_conv): ConvModule(
|
622 |
+
(conv): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(36, 36), dilation=(36, 36), groups=2048, bias=False)
|
623 |
+
(bn): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
624 |
+
(activate): ReLU(inplace=True)
|
625 |
+
)
|
626 |
+
(pointwise_conv): ConvModule(
|
627 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
628 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
629 |
+
(activate): ReLU(inplace=True)
|
630 |
+
)
|
631 |
+
)
|
632 |
+
)
|
633 |
+
(bottleneck): ConvModule(
|
634 |
+
(conv): Conv2d(2560, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
635 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
636 |
+
(activate): ReLU(inplace=True)
|
637 |
+
)
|
638 |
+
(c1_bottleneck): ConvModule(
|
639 |
+
(conv): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
640 |
+
(bn): SyncBatchNorm(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
641 |
+
(activate): ReLU(inplace=True)
|
642 |
+
)
|
643 |
+
(sep_bottleneck): Sequential(
|
644 |
+
(0): DepthwiseSeparableConvModule(
|
645 |
+
(depthwise_conv): ConvModule(
|
646 |
+
(conv): Conv2d(560, 560, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=560, bias=False)
|
647 |
+
(bn): SyncBatchNorm(560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
648 |
+
(activate): ReLU(inplace=True)
|
649 |
+
)
|
650 |
+
(pointwise_conv): ConvModule(
|
651 |
+
(conv): Conv2d(560, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
652 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
653 |
+
(activate): ReLU(inplace=True)
|
654 |
+
)
|
655 |
+
)
|
656 |
+
(1): DepthwiseSeparableConvModule(
|
657 |
+
(depthwise_conv): ConvModule(
|
658 |
+
(conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)
|
659 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
660 |
+
(activate): ReLU(inplace=True)
|
661 |
+
)
|
662 |
+
(pointwise_conv): ConvModule(
|
663 |
+
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
664 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
665 |
+
(activate): ReLU(inplace=True)
|
666 |
+
)
|
667 |
+
)
|
668 |
+
)
|
669 |
+
(unet): Unet(
|
670 |
+
(init_conv): Conv2d(528, 256, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
|
671 |
+
(time_mlp): Sequential(
|
672 |
+
(0): SinusoidalPosEmb()
|
673 |
+
(1): Linear(in_features=256, out_features=1024, bias=True)
|
674 |
+
(2): GELU(approximate='none')
|
675 |
+
(3): Linear(in_features=1024, out_features=1024, bias=True)
|
676 |
+
)
|
677 |
+
(downs): ModuleList(
|
678 |
+
(0): ModuleList(
|
679 |
+
(0): ResnetBlock(
|
680 |
+
(mlp): Sequential(
|
681 |
+
(0): SiLU()
|
682 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
683 |
+
)
|
684 |
+
(block1): Block(
|
685 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
686 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
687 |
+
(act): SiLU()
|
688 |
+
)
|
689 |
+
(block2): Block(
|
690 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
691 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
692 |
+
(act): SiLU()
|
693 |
+
)
|
694 |
+
(res_conv): Identity()
|
695 |
+
)
|
696 |
+
(1): ResnetBlock(
|
697 |
+
(mlp): Sequential(
|
698 |
+
(0): SiLU()
|
699 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
700 |
+
)
|
701 |
+
(block1): Block(
|
702 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
703 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
704 |
+
(act): SiLU()
|
705 |
+
)
|
706 |
+
(block2): Block(
|
707 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
708 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
709 |
+
(act): SiLU()
|
710 |
+
)
|
711 |
+
(res_conv): Identity()
|
712 |
+
)
|
713 |
+
(2): Residual(
|
714 |
+
(fn): PreNorm(
|
715 |
+
(fn): LinearAttention(
|
716 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
717 |
+
(to_out): Sequential(
|
718 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
719 |
+
(1): LayerNorm()
|
720 |
+
)
|
721 |
+
)
|
722 |
+
(norm): LayerNorm()
|
723 |
+
)
|
724 |
+
)
|
725 |
+
(3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
726 |
+
)
|
727 |
+
(1): ModuleList(
|
728 |
+
(0): ResnetBlock(
|
729 |
+
(mlp): Sequential(
|
730 |
+
(0): SiLU()
|
731 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
732 |
+
)
|
733 |
+
(block1): Block(
|
734 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
735 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
736 |
+
(act): SiLU()
|
737 |
+
)
|
738 |
+
(block2): Block(
|
739 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
740 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
741 |
+
(act): SiLU()
|
742 |
+
)
|
743 |
+
(res_conv): Identity()
|
744 |
+
)
|
745 |
+
(1): ResnetBlock(
|
746 |
+
(mlp): Sequential(
|
747 |
+
(0): SiLU()
|
748 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
749 |
+
)
|
750 |
+
(block1): Block(
|
751 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
752 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
753 |
+
(act): SiLU()
|
754 |
+
)
|
755 |
+
(block2): Block(
|
756 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
757 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
758 |
+
(act): SiLU()
|
759 |
+
)
|
760 |
+
(res_conv): Identity()
|
761 |
+
)
|
762 |
+
(2): Residual(
|
763 |
+
(fn): PreNorm(
|
764 |
+
(fn): LinearAttention(
|
765 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
766 |
+
(to_out): Sequential(
|
767 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
768 |
+
(1): LayerNorm()
|
769 |
+
)
|
770 |
+
)
|
771 |
+
(norm): LayerNorm()
|
772 |
+
)
|
773 |
+
)
|
774 |
+
(3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
775 |
+
)
|
776 |
+
(2): ModuleList(
|
777 |
+
(0): ResnetBlock(
|
778 |
+
(mlp): Sequential(
|
779 |
+
(0): SiLU()
|
780 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
781 |
+
)
|
782 |
+
(block1): Block(
|
783 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
784 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
785 |
+
(act): SiLU()
|
786 |
+
)
|
787 |
+
(block2): Block(
|
788 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
789 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
790 |
+
(act): SiLU()
|
791 |
+
)
|
792 |
+
(res_conv): Identity()
|
793 |
+
)
|
794 |
+
(1): ResnetBlock(
|
795 |
+
(mlp): Sequential(
|
796 |
+
(0): SiLU()
|
797 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
798 |
+
)
|
799 |
+
(block1): Block(
|
800 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
801 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
802 |
+
(act): SiLU()
|
803 |
+
)
|
804 |
+
(block2): Block(
|
805 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
806 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
807 |
+
(act): SiLU()
|
808 |
+
)
|
809 |
+
(res_conv): Identity()
|
810 |
+
)
|
811 |
+
(2): Residual(
|
812 |
+
(fn): PreNorm(
|
813 |
+
(fn): LinearAttention(
|
814 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
815 |
+
(to_out): Sequential(
|
816 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
817 |
+
(1): LayerNorm()
|
818 |
+
)
|
819 |
+
)
|
820 |
+
(norm): LayerNorm()
|
821 |
+
)
|
822 |
+
)
|
823 |
+
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
824 |
+
)
|
825 |
+
)
|
826 |
+
(ups): ModuleList(
|
827 |
+
(0): ModuleList(
|
828 |
+
(0): ResnetBlock(
|
829 |
+
(mlp): Sequential(
|
830 |
+
(0): SiLU()
|
831 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
832 |
+
)
|
833 |
+
(block1): Block(
|
834 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
835 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
836 |
+
(act): SiLU()
|
837 |
+
)
|
838 |
+
(block2): Block(
|
839 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
840 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
841 |
+
(act): SiLU()
|
842 |
+
)
|
843 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
844 |
+
)
|
845 |
+
(1): ResnetBlock(
|
846 |
+
(mlp): Sequential(
|
847 |
+
(0): SiLU()
|
848 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
849 |
+
)
|
850 |
+
(block1): Block(
|
851 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
852 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
853 |
+
(act): SiLU()
|
854 |
+
)
|
855 |
+
(block2): Block(
|
856 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
857 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
858 |
+
(act): SiLU()
|
859 |
+
)
|
860 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
861 |
+
)
|
862 |
+
(2): Residual(
|
863 |
+
(fn): PreNorm(
|
864 |
+
(fn): LinearAttention(
|
865 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
866 |
+
(to_out): Sequential(
|
867 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
868 |
+
(1): LayerNorm()
|
869 |
+
)
|
870 |
+
)
|
871 |
+
(norm): LayerNorm()
|
872 |
+
)
|
873 |
+
)
|
874 |
+
(3): Sequential(
|
875 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
876 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
877 |
+
)
|
878 |
+
)
|
879 |
+
(1): ModuleList(
|
880 |
+
(0): ResnetBlock(
|
881 |
+
(mlp): Sequential(
|
882 |
+
(0): SiLU()
|
883 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
884 |
+
)
|
885 |
+
(block1): Block(
|
886 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
887 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
888 |
+
(act): SiLU()
|
889 |
+
)
|
890 |
+
(block2): Block(
|
891 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
892 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
893 |
+
(act): SiLU()
|
894 |
+
)
|
895 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
896 |
+
)
|
897 |
+
(1): ResnetBlock(
|
898 |
+
(mlp): Sequential(
|
899 |
+
(0): SiLU()
|
900 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
901 |
+
)
|
902 |
+
(block1): Block(
|
903 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
904 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
905 |
+
(act): SiLU()
|
906 |
+
)
|
907 |
+
(block2): Block(
|
908 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
909 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
910 |
+
(act): SiLU()
|
911 |
+
)
|
912 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
913 |
+
)
|
914 |
+
(2): Residual(
|
915 |
+
(fn): PreNorm(
|
916 |
+
(fn): LinearAttention(
|
917 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
918 |
+
(to_out): Sequential(
|
919 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
920 |
+
(1): LayerNorm()
|
921 |
+
)
|
922 |
+
)
|
923 |
+
(norm): LayerNorm()
|
924 |
+
)
|
925 |
+
)
|
926 |
+
(3): Sequential(
|
927 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
928 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
929 |
+
)
|
930 |
+
)
|
931 |
+
(2): ModuleList(
|
932 |
+
(0): ResnetBlock(
|
933 |
+
(mlp): Sequential(
|
934 |
+
(0): SiLU()
|
935 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
936 |
+
)
|
937 |
+
(block1): Block(
|
938 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
939 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
940 |
+
(act): SiLU()
|
941 |
+
)
|
942 |
+
(block2): Block(
|
943 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
944 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
945 |
+
(act): SiLU()
|
946 |
+
)
|
947 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
948 |
+
)
|
949 |
+
(1): ResnetBlock(
|
950 |
+
(mlp): Sequential(
|
951 |
+
(0): SiLU()
|
952 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
953 |
+
)
|
954 |
+
(block1): Block(
|
955 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
956 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
957 |
+
(act): SiLU()
|
958 |
+
)
|
959 |
+
(block2): Block(
|
960 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
961 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
962 |
+
(act): SiLU()
|
963 |
+
)
|
964 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
965 |
+
)
|
966 |
+
(2): Residual(
|
967 |
+
(fn): PreNorm(
|
968 |
+
(fn): LinearAttention(
|
969 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
970 |
+
(to_out): Sequential(
|
971 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
972 |
+
(1): LayerNorm()
|
973 |
+
)
|
974 |
+
)
|
975 |
+
(norm): LayerNorm()
|
976 |
+
)
|
977 |
+
)
|
978 |
+
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
979 |
+
)
|
980 |
+
)
|
981 |
+
(mid_block1): ResnetBlock(
|
982 |
+
(mlp): Sequential(
|
983 |
+
(0): SiLU()
|
984 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
985 |
+
)
|
986 |
+
(block1): Block(
|
987 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
988 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
989 |
+
(act): SiLU()
|
990 |
+
)
|
991 |
+
(block2): Block(
|
992 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
993 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
994 |
+
(act): SiLU()
|
995 |
+
)
|
996 |
+
(res_conv): Identity()
|
997 |
+
)
|
998 |
+
(mid_attn): Residual(
|
999 |
+
(fn): PreNorm(
|
1000 |
+
(fn): Attention(
|
1001 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1002 |
+
(to_out): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
1003 |
+
)
|
1004 |
+
(norm): LayerNorm()
|
1005 |
+
)
|
1006 |
+
)
|
1007 |
+
(mid_block2): ResnetBlock(
|
1008 |
+
(mlp): Sequential(
|
1009 |
+
(0): SiLU()
|
1010 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
1011 |
+
)
|
1012 |
+
(block1): Block(
|
1013 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1014 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
1015 |
+
(act): SiLU()
|
1016 |
+
)
|
1017 |
+
(block2): Block(
|
1018 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1019 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
1020 |
+
(act): SiLU()
|
1021 |
+
)
|
1022 |
+
(res_conv): Identity()
|
1023 |
+
)
|
1024 |
+
(final_res_block): ResnetBlock(
|
1025 |
+
(mlp): Sequential(
|
1026 |
+
(0): SiLU()
|
1027 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
1028 |
+
)
|
1029 |
+
(block1): Block(
|
1030 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1031 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
1032 |
+
(act): SiLU()
|
1033 |
+
)
|
1034 |
+
(block2): Block(
|
1035 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1036 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
1037 |
+
(act): SiLU()
|
1038 |
+
)
|
1039 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
1040 |
+
)
|
1041 |
+
(final_conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
|
1042 |
+
)
|
1043 |
+
(conv_seg_new): Conv2d(256, 151, kernel_size=(1, 1), stride=(1, 1))
|
1044 |
+
(embed): Embedding(151, 16)
|
1045 |
+
)
|
1046 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth'}
|
1047 |
+
)
|
1048 |
+
2023-03-03 20:38:11,641 - mmseg - INFO - Loaded 20210 images
|
1049 |
+
2023-03-03 20:38:12,746 - mmseg - INFO - Loaded 2000 images
|
1050 |
+
2023-03-03 20:38:12,750 - mmseg - INFO - Start running, host: laizeqiang@SH-IDC1-10-140-37-139, work_dir: /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151
|
1051 |
+
2023-03-03 20:38:12,750 - mmseg - INFO - Hooks will be executed in the following order:
|
1052 |
+
before_run:
|
1053 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1054 |
+
(NORMAL ) CheckpointHook
|
1055 |
+
(LOW ) DistEvalHookMultiSteps
|
1056 |
+
(VERY_LOW ) TextLoggerHook
|
1057 |
+
--------------------
|
1058 |
+
before_train_epoch:
|
1059 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1060 |
+
(LOW ) IterTimerHook
|
1061 |
+
(LOW ) DistEvalHookMultiSteps
|
1062 |
+
(VERY_LOW ) TextLoggerHook
|
1063 |
+
--------------------
|
1064 |
+
before_train_iter:
|
1065 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1066 |
+
(LOW ) IterTimerHook
|
1067 |
+
(LOW ) DistEvalHookMultiSteps
|
1068 |
+
--------------------
|
1069 |
+
after_train_iter:
|
1070 |
+
(ABOVE_NORMAL) OptimizerHook
|
1071 |
+
(NORMAL ) CheckpointHook
|
1072 |
+
(LOW ) IterTimerHook
|
1073 |
+
(LOW ) DistEvalHookMultiSteps
|
1074 |
+
(VERY_LOW ) TextLoggerHook
|
1075 |
+
--------------------
|
1076 |
+
after_train_epoch:
|
1077 |
+
(NORMAL ) CheckpointHook
|
1078 |
+
(LOW ) DistEvalHookMultiSteps
|
1079 |
+
(VERY_LOW ) TextLoggerHook
|
1080 |
+
--------------------
|
1081 |
+
before_val_epoch:
|
1082 |
+
(LOW ) IterTimerHook
|
1083 |
+
(VERY_LOW ) TextLoggerHook
|
1084 |
+
--------------------
|
1085 |
+
before_val_iter:
|
1086 |
+
(LOW ) IterTimerHook
|
1087 |
+
--------------------
|
1088 |
+
after_val_iter:
|
1089 |
+
(LOW ) IterTimerHook
|
1090 |
+
--------------------
|
1091 |
+
after_val_epoch:
|
1092 |
+
(VERY_LOW ) TextLoggerHook
|
1093 |
+
--------------------
|
1094 |
+
after_run:
|
1095 |
+
(VERY_LOW ) TextLoggerHook
|
1096 |
+
--------------------
|
1097 |
+
2023-03-03 20:38:12,750 - mmseg - INFO - workflow: [('train', 1)], max: 80000 iters
|
1098 |
+
2023-03-03 20:38:12,751 - mmseg - INFO - Checkpoints will be saved to /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151 by HardDiskBackend.
|
1099 |
+
2023-03-03 20:39:04,527 - mmseg - INFO - Iter [50/80000] lr: 7.350e-06, eta: 12:26:58, time: 0.561, data_time: 0.016, memory: 39544, decode.loss_ce: 3.5336, decode.acc_seg: 28.1587, loss: 3.5336
|
1100 |
+
2023-03-03 20:39:19,367 - mmseg - INFO - Iter [100/80000] lr: 1.485e-05, eta: 9:30:52, time: 0.297, data_time: 0.007, memory: 39544, decode.loss_ce: 2.0701, decode.acc_seg: 58.4895, loss: 2.0701
|
deeplabv3plus_r101_singlestep/20230303_203803.log.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+c844fc6", "seed": 1819371145, "exp_name": "deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py", "mmseg_version": "0.30.0+c844fc6", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\nmodel = dict(\n type='EncoderDecoderFreeze',\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth',\n backbone=dict(\n type='ResNetV1cCustomInitWeights',\n depth=101,\n num_stages=4,\n out_indices=(0, 1, 2, 3),\n dilations=(1, 1, 2, 4),\n strides=(1, 2, 1, 1),\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n norm_eval=False,\n style='pytorch',\n contract_dilation=True,\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth'\n ),\n decode_head=dict(\n type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth',\n dim=256,\n out_dim=256,\n unet_channels=528,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n ignore_index=0,\n in_channels=2048,\n in_index=3,\n channels=512,\n dilations=(1, 12, 24, 36),\n c1_in_channels=256,\n c1_channels=48,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n auxiliary_head=None,\n train_cfg=dict(),\n test_cfg=dict(mode='whole'),\n freeze_parameters=['backbone', 'decode_head'])\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\ncheckpoint = 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth'\nwork_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 1819371145\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
2 |
+
{"mode": "train", "epoch": 1, "iter": 50, "lr": 1e-05, "memory": 39544, "data_time": 0.01566, "decode.loss_ce": 3.5336, "decode.acc_seg": 28.15875, "loss": 3.5336, "time": 0.56058}
|
3 |
+
{"mode": "train", "epoch": 1, "iter": 100, "lr": 1e-05, "memory": 39544, "data_time": 0.00705, "decode.loss_ce": 2.07009, "decode.acc_seg": 58.48949, "loss": 2.07009, "time": 0.2968}
|
deeplabv3plus_r101_singlestep/20230303_203941.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deeplabv3plus_r101_singlestep/20230303_203941.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deeplabv3plus_r101_singlestep/best_mIoU_iter_40000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b06c7b04aa5f60270c6170a931700d6af2a09d30ac2c1c36382bf73eed3424e0
|
3 |
+
size 770615576
|
deeplabv3plus_r101_singlestep/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
model = dict(
|
3 |
+
type='EncoderDecoderFreeze',
|
4 |
+
pretrained=
|
5 |
+
'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1cCustomInitWeights',
|
8 |
+
depth=101,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',
|
19 |
+
pretrained=
|
20 |
+
'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth',
|
21 |
+
dim=256,
|
22 |
+
out_dim=256,
|
23 |
+
unet_channels=528,
|
24 |
+
dim_mults=[1, 1, 1],
|
25 |
+
cat_embedding_dim=16,
|
26 |
+
ignore_index=0,
|
27 |
+
in_channels=2048,
|
28 |
+
in_index=3,
|
29 |
+
channels=512,
|
30 |
+
dilations=(1, 12, 24, 36),
|
31 |
+
c1_in_channels=256,
|
32 |
+
c1_channels=48,
|
33 |
+
dropout_ratio=0.1,
|
34 |
+
num_classes=151,
|
35 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
36 |
+
align_corners=False,
|
37 |
+
loss_decode=dict(
|
38 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
39 |
+
auxiliary_head=None,
|
40 |
+
train_cfg=dict(),
|
41 |
+
test_cfg=dict(mode='whole'),
|
42 |
+
freeze_parameters=['backbone', 'decode_head'])
|
43 |
+
dataset_type = 'ADE20K151Dataset'
|
44 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
45 |
+
img_norm_cfg = dict(
|
46 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
47 |
+
crop_size = (512, 512)
|
48 |
+
train_pipeline = [
|
49 |
+
dict(type='LoadImageFromFile'),
|
50 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
51 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
52 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
53 |
+
dict(type='RandomFlip', prob=0.5),
|
54 |
+
dict(type='PhotoMetricDistortion'),
|
55 |
+
dict(
|
56 |
+
type='Normalize',
|
57 |
+
mean=[123.675, 116.28, 103.53],
|
58 |
+
std=[58.395, 57.12, 57.375],
|
59 |
+
to_rgb=True),
|
60 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
61 |
+
dict(type='DefaultFormatBundle'),
|
62 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
63 |
+
]
|
64 |
+
test_pipeline = [
|
65 |
+
dict(type='LoadImageFromFile'),
|
66 |
+
dict(
|
67 |
+
type='MultiScaleFlipAug',
|
68 |
+
img_scale=(2048, 512),
|
69 |
+
flip=False,
|
70 |
+
transforms=[
|
71 |
+
dict(type='Resize', keep_ratio=True),
|
72 |
+
dict(type='RandomFlip'),
|
73 |
+
dict(
|
74 |
+
type='Normalize',
|
75 |
+
mean=[123.675, 116.28, 103.53],
|
76 |
+
std=[58.395, 57.12, 57.375],
|
77 |
+
to_rgb=True),
|
78 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
79 |
+
dict(type='ImageToTensor', keys=['img']),
|
80 |
+
dict(type='Collect', keys=['img'])
|
81 |
+
])
|
82 |
+
]
|
83 |
+
data = dict(
|
84 |
+
samples_per_gpu=4,
|
85 |
+
workers_per_gpu=4,
|
86 |
+
train=dict(
|
87 |
+
type='ADE20K151Dataset',
|
88 |
+
data_root='data/ade/ADEChallengeData2016',
|
89 |
+
img_dir='images/training',
|
90 |
+
ann_dir='annotations/training',
|
91 |
+
pipeline=[
|
92 |
+
dict(type='LoadImageFromFile'),
|
93 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
94 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
95 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
96 |
+
dict(type='RandomFlip', prob=0.5),
|
97 |
+
dict(type='PhotoMetricDistortion'),
|
98 |
+
dict(
|
99 |
+
type='Normalize',
|
100 |
+
mean=[123.675, 116.28, 103.53],
|
101 |
+
std=[58.395, 57.12, 57.375],
|
102 |
+
to_rgb=True),
|
103 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
104 |
+
dict(type='DefaultFormatBundle'),
|
105 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
106 |
+
]),
|
107 |
+
val=dict(
|
108 |
+
type='ADE20K151Dataset',
|
109 |
+
data_root='data/ade/ADEChallengeData2016',
|
110 |
+
img_dir='images/validation',
|
111 |
+
ann_dir='annotations/validation',
|
112 |
+
pipeline=[
|
113 |
+
dict(type='LoadImageFromFile'),
|
114 |
+
dict(
|
115 |
+
type='MultiScaleFlipAug',
|
116 |
+
img_scale=(2048, 512),
|
117 |
+
flip=False,
|
118 |
+
transforms=[
|
119 |
+
dict(type='Resize', keep_ratio=True),
|
120 |
+
dict(type='RandomFlip'),
|
121 |
+
dict(
|
122 |
+
type='Normalize',
|
123 |
+
mean=[123.675, 116.28, 103.53],
|
124 |
+
std=[58.395, 57.12, 57.375],
|
125 |
+
to_rgb=True),
|
126 |
+
dict(
|
127 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
128 |
+
dict(type='ImageToTensor', keys=['img']),
|
129 |
+
dict(type='Collect', keys=['img'])
|
130 |
+
])
|
131 |
+
]),
|
132 |
+
test=dict(
|
133 |
+
type='ADE20K151Dataset',
|
134 |
+
data_root='data/ade/ADEChallengeData2016',
|
135 |
+
img_dir='images/validation',
|
136 |
+
ann_dir='annotations/validation',
|
137 |
+
pipeline=[
|
138 |
+
dict(type='LoadImageFromFile'),
|
139 |
+
dict(
|
140 |
+
type='MultiScaleFlipAug',
|
141 |
+
img_scale=(2048, 512),
|
142 |
+
flip=False,
|
143 |
+
transforms=[
|
144 |
+
dict(type='Resize', keep_ratio=True),
|
145 |
+
dict(type='RandomFlip'),
|
146 |
+
dict(
|
147 |
+
type='Normalize',
|
148 |
+
mean=[123.675, 116.28, 103.53],
|
149 |
+
std=[58.395, 57.12, 57.375],
|
150 |
+
to_rgb=True),
|
151 |
+
dict(
|
152 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
153 |
+
dict(type='ImageToTensor', keys=['img']),
|
154 |
+
dict(type='Collect', keys=['img'])
|
155 |
+
])
|
156 |
+
]))
|
157 |
+
log_config = dict(
|
158 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
159 |
+
dist_params = dict(backend='nccl')
|
160 |
+
log_level = 'INFO'
|
161 |
+
load_from = None
|
162 |
+
resume_from = None
|
163 |
+
workflow = [('train', 1)]
|
164 |
+
cudnn_benchmark = True
|
165 |
+
optimizer = dict(
|
166 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
167 |
+
optimizer_config = dict()
|
168 |
+
lr_config = dict(
|
169 |
+
policy='step',
|
170 |
+
warmup='linear',
|
171 |
+
warmup_iters=1000,
|
172 |
+
warmup_ratio=1e-06,
|
173 |
+
step=10000,
|
174 |
+
gamma=0.5,
|
175 |
+
min_lr=1e-06,
|
176 |
+
by_epoch=False)
|
177 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
178 |
+
checkpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)
|
179 |
+
evaluation = dict(
|
180 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
181 |
+
checkpoint = 'pretrained/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth'
|
182 |
+
work_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151'
|
183 |
+
gpu_ids = range(0, 8)
|
184 |
+
auto_resume = True
|
deeplabv3plus_r101_singlestep/iter_80000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:263bd7c19856023af0cf1e1afc8836102394bd9803b305cc4da44a0618322337
|
3 |
+
size 770615576
|
deeplabv3plus_r101_singlestep/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:263bd7c19856023af0cf1e1afc8836102394bd9803b305cc4da44a0618322337
|
3 |
+
size 770615576
|
deeplabv3plus_r50_multistep/20230303_205044.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deeplabv3plus_r50_multistep/20230303_205044.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deeplabv3plus_r50_multistep/best_mIoU_iter_48000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:971982e043fc2dc4127fcf7406cd919b47832c17b86b09f57a3d192406e88343
|
3 |
+
size 538307211
|
deeplabv3plus_r50_multistep/deeplabv3plus_r50-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
model = dict(
|
3 |
+
type='EncoderDecoderDiffusion',
|
4 |
+
pretrained=
|
5 |
+
'work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1cCustomInitWeights',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadMultiStep',
|
19 |
+
pretrained=
|
20 |
+
'work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth',
|
21 |
+
dim=128,
|
22 |
+
out_dim=256,
|
23 |
+
unet_channels=528,
|
24 |
+
dim_mults=[1, 1, 1],
|
25 |
+
cat_embedding_dim=16,
|
26 |
+
ignore_index=0,
|
27 |
+
diffusion_timesteps=100,
|
28 |
+
collect_timesteps=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99],
|
29 |
+
in_channels=2048,
|
30 |
+
in_index=3,
|
31 |
+
channels=512,
|
32 |
+
dilations=(1, 12, 24, 36),
|
33 |
+
c1_in_channels=256,
|
34 |
+
c1_channels=48,
|
35 |
+
dropout_ratio=0.1,
|
36 |
+
num_classes=151,
|
37 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
38 |
+
align_corners=False,
|
39 |
+
loss_decode=dict(
|
40 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
41 |
+
auxiliary_head=None,
|
42 |
+
train_cfg=dict(),
|
43 |
+
test_cfg=dict(mode='whole'),
|
44 |
+
freeze_parameters=['backbone', 'decode_head'])
|
45 |
+
dataset_type = 'ADE20K151Dataset'
|
46 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
47 |
+
img_norm_cfg = dict(
|
48 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
49 |
+
crop_size = (512, 512)
|
50 |
+
train_pipeline = [
|
51 |
+
dict(type='LoadImageFromFile'),
|
52 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
53 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
54 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
55 |
+
dict(type='RandomFlip', prob=0.5),
|
56 |
+
dict(type='PhotoMetricDistortion'),
|
57 |
+
dict(
|
58 |
+
type='Normalize',
|
59 |
+
mean=[123.675, 116.28, 103.53],
|
60 |
+
std=[58.395, 57.12, 57.375],
|
61 |
+
to_rgb=True),
|
62 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
63 |
+
dict(type='DefaultFormatBundle'),
|
64 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
65 |
+
]
|
66 |
+
test_pipeline = [
|
67 |
+
dict(type='LoadImageFromFile'),
|
68 |
+
dict(
|
69 |
+
type='MultiScaleFlipAug',
|
70 |
+
img_scale=(2048, 512),
|
71 |
+
flip=False,
|
72 |
+
transforms=[
|
73 |
+
dict(type='Resize', keep_ratio=True),
|
74 |
+
dict(type='RandomFlip'),
|
75 |
+
dict(
|
76 |
+
type='Normalize',
|
77 |
+
mean=[123.675, 116.28, 103.53],
|
78 |
+
std=[58.395, 57.12, 57.375],
|
79 |
+
to_rgb=True),
|
80 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
81 |
+
dict(type='ImageToTensor', keys=['img']),
|
82 |
+
dict(type='Collect', keys=['img'])
|
83 |
+
])
|
84 |
+
]
|
85 |
+
data = dict(
|
86 |
+
samples_per_gpu=4,
|
87 |
+
workers_per_gpu=4,
|
88 |
+
train=dict(
|
89 |
+
type='ADE20K151Dataset',
|
90 |
+
data_root='data/ade/ADEChallengeData2016',
|
91 |
+
img_dir='images/training',
|
92 |
+
ann_dir='annotations/training',
|
93 |
+
pipeline=[
|
94 |
+
dict(type='LoadImageFromFile'),
|
95 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
96 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
97 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
98 |
+
dict(type='RandomFlip', prob=0.5),
|
99 |
+
dict(type='PhotoMetricDistortion'),
|
100 |
+
dict(
|
101 |
+
type='Normalize',
|
102 |
+
mean=[123.675, 116.28, 103.53],
|
103 |
+
std=[58.395, 57.12, 57.375],
|
104 |
+
to_rgb=True),
|
105 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
106 |
+
dict(type='DefaultFormatBundle'),
|
107 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
108 |
+
]),
|
109 |
+
val=dict(
|
110 |
+
type='ADE20K151Dataset',
|
111 |
+
data_root='data/ade/ADEChallengeData2016',
|
112 |
+
img_dir='images/validation',
|
113 |
+
ann_dir='annotations/validation',
|
114 |
+
pipeline=[
|
115 |
+
dict(type='LoadImageFromFile'),
|
116 |
+
dict(
|
117 |
+
type='MultiScaleFlipAug',
|
118 |
+
img_scale=(2048, 512),
|
119 |
+
flip=False,
|
120 |
+
transforms=[
|
121 |
+
dict(type='Resize', keep_ratio=True),
|
122 |
+
dict(type='RandomFlip'),
|
123 |
+
dict(
|
124 |
+
type='Normalize',
|
125 |
+
mean=[123.675, 116.28, 103.53],
|
126 |
+
std=[58.395, 57.12, 57.375],
|
127 |
+
to_rgb=True),
|
128 |
+
dict(
|
129 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
130 |
+
dict(type='ImageToTensor', keys=['img']),
|
131 |
+
dict(type='Collect', keys=['img'])
|
132 |
+
])
|
133 |
+
]),
|
134 |
+
test=dict(
|
135 |
+
type='ADE20K151Dataset',
|
136 |
+
data_root='data/ade/ADEChallengeData2016',
|
137 |
+
img_dir='images/validation',
|
138 |
+
ann_dir='annotations/validation',
|
139 |
+
pipeline=[
|
140 |
+
dict(type='LoadImageFromFile'),
|
141 |
+
dict(
|
142 |
+
type='MultiScaleFlipAug',
|
143 |
+
img_scale=(2048, 512),
|
144 |
+
flip=False,
|
145 |
+
transforms=[
|
146 |
+
dict(type='Resize', keep_ratio=True),
|
147 |
+
dict(type='RandomFlip'),
|
148 |
+
dict(
|
149 |
+
type='Normalize',
|
150 |
+
mean=[123.675, 116.28, 103.53],
|
151 |
+
std=[58.395, 57.12, 57.375],
|
152 |
+
to_rgb=True),
|
153 |
+
dict(
|
154 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
155 |
+
dict(type='ImageToTensor', keys=['img']),
|
156 |
+
dict(type='Collect', keys=['img'])
|
157 |
+
])
|
158 |
+
]))
|
159 |
+
log_config = dict(
|
160 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
161 |
+
dist_params = dict(backend='nccl')
|
162 |
+
log_level = 'INFO'
|
163 |
+
load_from = None
|
164 |
+
resume_from = None
|
165 |
+
workflow = [('train', 1)]
|
166 |
+
cudnn_benchmark = True
|
167 |
+
optimizer = dict(
|
168 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
169 |
+
optimizer_config = dict()
|
170 |
+
lr_config = dict(
|
171 |
+
policy='step',
|
172 |
+
warmup='linear',
|
173 |
+
warmup_iters=1000,
|
174 |
+
warmup_ratio=1e-06,
|
175 |
+
step=20000,
|
176 |
+
gamma=0.5,
|
177 |
+
min_lr=1e-06,
|
178 |
+
by_epoch=False)
|
179 |
+
runner = dict(type='IterBasedRunner', max_iters=160000)
|
180 |
+
checkpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)
|
181 |
+
evaluation = dict(
|
182 |
+
interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
183 |
+
checkpoint = 'work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth'
|
184 |
+
custom_hooks = [
|
185 |
+
dict(
|
186 |
+
type='ConstantMomentumEMAHook',
|
187 |
+
momentum=0.01,
|
188 |
+
interval=25,
|
189 |
+
eval_interval=16000,
|
190 |
+
auto_resume=True,
|
191 |
+
priority=49)
|
192 |
+
]
|
193 |
+
work_dir = './work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune'
|
194 |
+
gpu_ids = range(0, 8)
|
195 |
+
auto_resume = True
|
deeplabv3plus_r50_multistep/iter_160000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c2b872510c01925ff55f43bf74197c8f95cf4d12adb0b7f3f5c1f8dd78d0520
|
3 |
+
size 538307275
|
deeplabv3plus_r50_multistep/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c2b872510c01925ff55f43bf74197c8f95cf4d12adb0b7f3f5c1f8dd78d0520
|
3 |
+
size 538307275
|
deeplabv3plus_r50_singlestep/20230303_152127.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deeplabv3plus_r50_singlestep/20230303_152127.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deeplabv3plus_r50_singlestep/best_mIoU_iter_64000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1696a6290854ff78fdd815e6dd9ae448de193753f49557f28d1cf68d14ecbb14
|
3 |
+
size 321092234
|
deeplabv3plus_r50_singlestep/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
model = dict(
|
3 |
+
type='EncoderDecoderFreeze',
|
4 |
+
pretrained=
|
5 |
+
'pretrained/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1cCustomInitWeights',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',
|
19 |
+
pretrained=
|
20 |
+
'pretrained/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth',
|
21 |
+
dim=128,
|
22 |
+
out_dim=256,
|
23 |
+
unet_channels=528,
|
24 |
+
dim_mults=[1, 1, 1],
|
25 |
+
cat_embedding_dim=16,
|
26 |
+
ignore_index=0,
|
27 |
+
in_channels=2048,
|
28 |
+
in_index=3,
|
29 |
+
channels=512,
|
30 |
+
dilations=(1, 12, 24, 36),
|
31 |
+
c1_in_channels=256,
|
32 |
+
c1_channels=48,
|
33 |
+
dropout_ratio=0.1,
|
34 |
+
num_classes=151,
|
35 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
36 |
+
align_corners=False,
|
37 |
+
loss_decode=dict(
|
38 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
39 |
+
auxiliary_head=None,
|
40 |
+
train_cfg=dict(),
|
41 |
+
test_cfg=dict(mode='whole'),
|
42 |
+
freeze_parameters=['backbone', 'decode_head'])
|
43 |
+
dataset_type = 'ADE20K151Dataset'
|
44 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
45 |
+
img_norm_cfg = dict(
|
46 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
47 |
+
crop_size = (512, 512)
|
48 |
+
train_pipeline = [
|
49 |
+
dict(type='LoadImageFromFile'),
|
50 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
51 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
52 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
53 |
+
dict(type='RandomFlip', prob=0.5),
|
54 |
+
dict(type='PhotoMetricDistortion'),
|
55 |
+
dict(
|
56 |
+
type='Normalize',
|
57 |
+
mean=[123.675, 116.28, 103.53],
|
58 |
+
std=[58.395, 57.12, 57.375],
|
59 |
+
to_rgb=True),
|
60 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
61 |
+
dict(type='DefaultFormatBundle'),
|
62 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
63 |
+
]
|
64 |
+
test_pipeline = [
|
65 |
+
dict(type='LoadImageFromFile'),
|
66 |
+
dict(
|
67 |
+
type='MultiScaleFlipAug',
|
68 |
+
img_scale=(2048, 512),
|
69 |
+
flip=False,
|
70 |
+
transforms=[
|
71 |
+
dict(type='Resize', keep_ratio=True),
|
72 |
+
dict(type='RandomFlip'),
|
73 |
+
dict(
|
74 |
+
type='Normalize',
|
75 |
+
mean=[123.675, 116.28, 103.53],
|
76 |
+
std=[58.395, 57.12, 57.375],
|
77 |
+
to_rgb=True),
|
78 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
79 |
+
dict(type='ImageToTensor', keys=['img']),
|
80 |
+
dict(type='Collect', keys=['img'])
|
81 |
+
])
|
82 |
+
]
|
83 |
+
data = dict(
|
84 |
+
samples_per_gpu=4,
|
85 |
+
workers_per_gpu=4,
|
86 |
+
train=dict(
|
87 |
+
type='ADE20K151Dataset',
|
88 |
+
data_root='data/ade/ADEChallengeData2016',
|
89 |
+
img_dir='images/training',
|
90 |
+
ann_dir='annotations/training',
|
91 |
+
pipeline=[
|
92 |
+
dict(type='LoadImageFromFile'),
|
93 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
94 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
95 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
96 |
+
dict(type='RandomFlip', prob=0.5),
|
97 |
+
dict(type='PhotoMetricDistortion'),
|
98 |
+
dict(
|
99 |
+
type='Normalize',
|
100 |
+
mean=[123.675, 116.28, 103.53],
|
101 |
+
std=[58.395, 57.12, 57.375],
|
102 |
+
to_rgb=True),
|
103 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
104 |
+
dict(type='DefaultFormatBundle'),
|
105 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
106 |
+
]),
|
107 |
+
val=dict(
|
108 |
+
type='ADE20K151Dataset',
|
109 |
+
data_root='data/ade/ADEChallengeData2016',
|
110 |
+
img_dir='images/validation',
|
111 |
+
ann_dir='annotations/validation',
|
112 |
+
pipeline=[
|
113 |
+
dict(type='LoadImageFromFile'),
|
114 |
+
dict(
|
115 |
+
type='MultiScaleFlipAug',
|
116 |
+
img_scale=(2048, 512),
|
117 |
+
flip=False,
|
118 |
+
transforms=[
|
119 |
+
dict(type='Resize', keep_ratio=True),
|
120 |
+
dict(type='RandomFlip'),
|
121 |
+
dict(
|
122 |
+
type='Normalize',
|
123 |
+
mean=[123.675, 116.28, 103.53],
|
124 |
+
std=[58.395, 57.12, 57.375],
|
125 |
+
to_rgb=True),
|
126 |
+
dict(
|
127 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
128 |
+
dict(type='ImageToTensor', keys=['img']),
|
129 |
+
dict(type='Collect', keys=['img'])
|
130 |
+
])
|
131 |
+
]),
|
132 |
+
test=dict(
|
133 |
+
type='ADE20K151Dataset',
|
134 |
+
data_root='data/ade/ADEChallengeData2016',
|
135 |
+
img_dir='images/validation',
|
136 |
+
ann_dir='annotations/validation',
|
137 |
+
pipeline=[
|
138 |
+
dict(type='LoadImageFromFile'),
|
139 |
+
dict(
|
140 |
+
type='MultiScaleFlipAug',
|
141 |
+
img_scale=(2048, 512),
|
142 |
+
flip=False,
|
143 |
+
transforms=[
|
144 |
+
dict(type='Resize', keep_ratio=True),
|
145 |
+
dict(type='RandomFlip'),
|
146 |
+
dict(
|
147 |
+
type='Normalize',
|
148 |
+
mean=[123.675, 116.28, 103.53],
|
149 |
+
std=[58.395, 57.12, 57.375],
|
150 |
+
to_rgb=True),
|
151 |
+
dict(
|
152 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
153 |
+
dict(type='ImageToTensor', keys=['img']),
|
154 |
+
dict(type='Collect', keys=['img'])
|
155 |
+
])
|
156 |
+
]))
|
157 |
+
log_config = dict(
|
158 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
159 |
+
dist_params = dict(backend='nccl')
|
160 |
+
log_level = 'INFO'
|
161 |
+
load_from = None
|
162 |
+
resume_from = None
|
163 |
+
workflow = [('train', 1)]
|
164 |
+
cudnn_benchmark = True
|
165 |
+
optimizer = dict(
|
166 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
167 |
+
optimizer_config = dict()
|
168 |
+
lr_config = dict(
|
169 |
+
policy='step',
|
170 |
+
warmup='linear',
|
171 |
+
warmup_iters=1000,
|
172 |
+
warmup_ratio=1e-06,
|
173 |
+
step=10000,
|
174 |
+
gamma=0.5,
|
175 |
+
min_lr=1e-06,
|
176 |
+
by_epoch=False)
|
177 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
178 |
+
checkpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)
|
179 |
+
evaluation = dict(
|
180 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
181 |
+
checkpoint = 'pretrained/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth'
|
182 |
+
work_dir = './work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151'
|
183 |
+
gpu_ids = range(0, 8)
|
184 |
+
auto_resume = True
|
deeplabv3plus_r50_singlestep/iter_80000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8efa434ff9ad26a122dc69d10ddc102b878093a2411cfc98eb1375245e73bbcf
|
3 |
+
size 321092234
|
deeplabv3plus_r50_singlestep/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8efa434ff9ad26a122dc69d10ddc102b878093a2411cfc98eb1375245e73bbcf
|
3 |
+
size 321092234
|
segformer_b2_multistep/20230302_115140.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
segformer_b2_multistep/20230302_115140.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
segformer_b2_multistep/best_mIoU_iter_144000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:179ba567174f208aa40788c943ffdb10c34be5c99739f87735eabef643846388
|
3 |
+
size 852011827
|
segformer_b2_multistep/eval_single_scale_20230303_091319.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": "configs/exp_test/segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_t100.py",
|
3 |
+
"metric": {
|
4 |
+
"mIoU": [
|
5 |
+
0.4926,
|
6 |
+
0.4933,
|
7 |
+
0.4939,
|
8 |
+
0.4945,
|
9 |
+
0.4947,
|
10 |
+
0.4953,
|
11 |
+
0.4956,
|
12 |
+
0.496,
|
13 |
+
0.496,
|
14 |
+
0.4961,
|
15 |
+
0.4965
|
16 |
+
],
|
17 |
+
"copy_paste": "49.26,49.33,49.39,49.45,49.47,49.53,49.56,49.6,49.6,49.61,49.65"
|
18 |
+
}
|
19 |
+
}
|
segformer_b2_multistep/iter_304000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6199086ebcc3365db2cdb308f362fd1f4b9a118bfc5631c39e1f2d1a102b789d
|
3 |
+
size 852011827
|
segformer_b2_multistep/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6199086ebcc3365db2cdb308f362fd1f4b9a118bfc5631c39e1f2d1a102b789d
|
3 |
+
size 852011827
|
segformer_b2_multistep/segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_t100.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
checkpoint = 'work_dirs/segformer_mit_b2_segformer_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151/iter_80000.pth'
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoderDiffusion',
|
5 |
+
freeze_parameters=['backbone', 'decode_head'],
|
6 |
+
pretrained=
|
7 |
+
'work_dirs/segformer_mit_b2_segformer_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151/iter_80000.pth',
|
8 |
+
backbone=dict(
|
9 |
+
type='MixVisionTransformerCustomInitWeights',
|
10 |
+
in_channels=3,
|
11 |
+
embed_dims=64,
|
12 |
+
num_stages=4,
|
13 |
+
num_layers=[3, 4, 6, 3],
|
14 |
+
num_heads=[1, 2, 5, 8],
|
15 |
+
patch_sizes=[7, 3, 3, 3],
|
16 |
+
sr_ratios=[8, 4, 2, 1],
|
17 |
+
out_indices=(0, 1, 2, 3),
|
18 |
+
mlp_ratio=4,
|
19 |
+
qkv_bias=True,
|
20 |
+
drop_rate=0.0,
|
21 |
+
attn_drop_rate=0.0,
|
22 |
+
drop_path_rate=0.1),
|
23 |
+
decode_head=dict(
|
24 |
+
type='SegformerHeadUnetFCHeadMultiStep',
|
25 |
+
pretrained=
|
26 |
+
'work_dirs/segformer_mit_b2_segformer_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_ade20k151/iter_80000.pth',
|
27 |
+
dim=256,
|
28 |
+
out_dim=256,
|
29 |
+
unet_channels=272,
|
30 |
+
dim_mults=[1, 1, 1],
|
31 |
+
cat_embedding_dim=16,
|
32 |
+
diffusion_timesteps=100,
|
33 |
+
collect_timesteps=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90],
|
34 |
+
in_channels=[64, 128, 320, 512],
|
35 |
+
in_index=[0, 1, 2, 3],
|
36 |
+
channels=256,
|
37 |
+
dropout_ratio=0.1,
|
38 |
+
num_classes=151,
|
39 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
40 |
+
align_corners=False,
|
41 |
+
ignore_index=0,
|
42 |
+
loss_decode=dict(
|
43 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
44 |
+
train_cfg=dict(),
|
45 |
+
test_cfg=dict(mode='whole'))
|
46 |
+
dataset_type = 'ADE20K151Dataset'
|
47 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
48 |
+
img_norm_cfg = dict(
|
49 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
50 |
+
crop_size = (512, 512)
|
51 |
+
train_pipeline = [
|
52 |
+
dict(type='LoadImageFromFile'),
|
53 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
54 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
55 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
56 |
+
dict(type='RandomFlip', prob=0.5),
|
57 |
+
dict(type='PhotoMetricDistortion'),
|
58 |
+
dict(
|
59 |
+
type='Normalize',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
to_rgb=True),
|
63 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
64 |
+
dict(type='DefaultFormatBundle'),
|
65 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
66 |
+
]
|
67 |
+
test_pipeline = [
|
68 |
+
dict(type='LoadImageFromFile'),
|
69 |
+
dict(
|
70 |
+
type='MultiScaleFlipAug',
|
71 |
+
img_scale=(2048, 512),
|
72 |
+
flip=False,
|
73 |
+
transforms=[
|
74 |
+
dict(type='Resize', keep_ratio=True),
|
75 |
+
dict(type='RandomFlip'),
|
76 |
+
dict(
|
77 |
+
type='Normalize',
|
78 |
+
mean=[123.675, 116.28, 103.53],
|
79 |
+
std=[58.395, 57.12, 57.375],
|
80 |
+
to_rgb=True),
|
81 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
82 |
+
dict(type='ImageToTensor', keys=['img']),
|
83 |
+
dict(type='Collect', keys=['img'])
|
84 |
+
])
|
85 |
+
]
|
86 |
+
data = dict(
|
87 |
+
samples_per_gpu=4,
|
88 |
+
workers_per_gpu=4,
|
89 |
+
train=dict(
|
90 |
+
type='ADE20K151Dataset',
|
91 |
+
data_root='data/ade/ADEChallengeData2016',
|
92 |
+
img_dir='images/training',
|
93 |
+
ann_dir='annotations/training',
|
94 |
+
pipeline=[
|
95 |
+
dict(type='LoadImageFromFile'),
|
96 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
97 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
98 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
99 |
+
dict(type='RandomFlip', prob=0.5),
|
100 |
+
dict(type='PhotoMetricDistortion'),
|
101 |
+
dict(
|
102 |
+
type='Normalize',
|
103 |
+
mean=[123.675, 116.28, 103.53],
|
104 |
+
std=[58.395, 57.12, 57.375],
|
105 |
+
to_rgb=True),
|
106 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
107 |
+
dict(type='DefaultFormatBundle'),
|
108 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
109 |
+
]),
|
110 |
+
val=dict(
|
111 |
+
type='ADE20K151Dataset',
|
112 |
+
data_root='data/ade/ADEChallengeData2016',
|
113 |
+
img_dir='images/validation',
|
114 |
+
ann_dir='annotations/validation',
|
115 |
+
pipeline=[
|
116 |
+
dict(type='LoadImageFromFile'),
|
117 |
+
dict(
|
118 |
+
type='MultiScaleFlipAug',
|
119 |
+
img_scale=(2048, 512),
|
120 |
+
flip=False,
|
121 |
+
transforms=[
|
122 |
+
dict(type='Resize', keep_ratio=True),
|
123 |
+
dict(type='RandomFlip'),
|
124 |
+
dict(
|
125 |
+
type='Normalize',
|
126 |
+
mean=[123.675, 116.28, 103.53],
|
127 |
+
std=[58.395, 57.12, 57.375],
|
128 |
+
to_rgb=True),
|
129 |
+
dict(
|
130 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
131 |
+
dict(type='ImageToTensor', keys=['img']),
|
132 |
+
dict(type='Collect', keys=['img'])
|
133 |
+
])
|
134 |
+
]),
|
135 |
+
test=dict(
|
136 |
+
type='ADE20K151Dataset',
|
137 |
+
data_root='data/ade/ADEChallengeData2016',
|
138 |
+
img_dir='images/validation',
|
139 |
+
ann_dir='annotations/validation',
|
140 |
+
pipeline=[
|
141 |
+
dict(type='LoadImageFromFile'),
|
142 |
+
dict(
|
143 |
+
type='MultiScaleFlipAug',
|
144 |
+
img_scale=(2048, 512),
|
145 |
+
flip=False,
|
146 |
+
transforms=[
|
147 |
+
dict(type='Resize', keep_ratio=True),
|
148 |
+
dict(type='RandomFlip'),
|
149 |
+
dict(
|
150 |
+
type='Normalize',
|
151 |
+
mean=[123.675, 116.28, 103.53],
|
152 |
+
std=[58.395, 57.12, 57.375],
|
153 |
+
to_rgb=True),
|
154 |
+
dict(
|
155 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
156 |
+
dict(type='ImageToTensor', keys=['img']),
|
157 |
+
dict(type='Collect', keys=['img'])
|
158 |
+
])
|
159 |
+
]))
|
160 |
+
log_config = dict(
|
161 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
162 |
+
dist_params = dict(backend='nccl')
|
163 |
+
log_level = 'INFO'
|
164 |
+
load_from = None
|
165 |
+
resume_from = None
|
166 |
+
workflow = [('train', 1)]
|
167 |
+
cudnn_benchmark = True
|
168 |
+
optimizer = dict(
|
169 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
170 |
+
optimizer_config = dict()
|
171 |
+
lr_config = dict(
|
172 |
+
policy='step',
|
173 |
+
warmup='linear',
|
174 |
+
warmup_iters=1000,
|
175 |
+
warmup_ratio=1e-06,
|
176 |
+
step=50000,
|
177 |
+
gamma=0.5,
|
178 |
+
min_lr=1e-06,
|
179 |
+
by_epoch=False)
|
180 |
+
runner = dict(type='IterBasedRunner', max_iters=400000)
|
181 |
+
checkpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)
|
182 |
+
evaluation = dict(
|
183 |
+
interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
184 |
+
custom_hooks = [
|
185 |
+
dict(
|
186 |
+
type='ConstantMomentumEMAHook',
|
187 |
+
momentum=0.01,
|
188 |
+
interval=25,
|
189 |
+
eval_interval=16000,
|
190 |
+
auto_resume=True,
|
191 |
+
priority=49)
|
192 |
+
]
|
193 |
+
work_dir = './work_dirs/segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_t100'
|
194 |
+
gpu_ids = range(0, 8)
|
195 |
+
auto_resume = True
|
segformer_b2_singlestep/20230303_135933.log
ADDED
@@ -0,0 +1,1137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-03 13:59:33,312 - mmseg - INFO - Multi-processing start method is `None`
|
2 |
+
2023-03-03 13:59:33,327 - mmseg - INFO - OpenCV num_threads is `128
|
3 |
+
2023-03-03 13:59:33,327 - mmseg - INFO - OMP num threads is 1
|
4 |
+
2023-03-03 13:59:33,410 - mmseg - INFO - Environment info:
|
5 |
+
------------------------------------------------------------
|
6 |
+
sys.platform: linux
|
7 |
+
Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]
|
8 |
+
CUDA available: True
|
9 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
|
10 |
+
CUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch
|
11 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
12 |
+
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
|
13 |
+
PyTorch: 1.13.1
|
14 |
+
PyTorch compiling details: PyTorch built with:
|
15 |
+
- GCC 9.3
|
16 |
+
- C++ Version: 201402
|
17 |
+
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
|
18 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
19 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
20 |
+
- LAPACK is enabled (usually provided by MKL)
|
21 |
+
- NNPACK is enabled
|
22 |
+
- CPU capability usage: AVX2
|
23 |
+
- CUDA Runtime 11.6
|
24 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
25 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
26 |
+
- Magma 2.6.1
|
27 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
28 |
+
|
29 |
+
TorchVision: 0.14.1
|
30 |
+
OpenCV: 4.7.0
|
31 |
+
MMCV: 1.7.1
|
32 |
+
MMCV Compiler: GCC 9.3
|
33 |
+
MMCV CUDA Compiler: 11.6
|
34 |
+
MMSegmentation: 0.30.0+ad87029
|
35 |
+
------------------------------------------------------------
|
36 |
+
|
37 |
+
2023-03-03 13:59:33,411 - mmseg - INFO - Distributed training: True
|
38 |
+
2023-03-03 13:59:34,043 - mmseg - INFO - Config:
|
39 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
40 |
+
checkpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'
|
41 |
+
model = dict(
|
42 |
+
type='EncoderDecoderFreeze',
|
43 |
+
freeze_parameters=['backbone', 'decode_head'],
|
44 |
+
pretrained=
|
45 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
46 |
+
backbone=dict(
|
47 |
+
type='MixVisionTransformerCustomInitWeights',
|
48 |
+
in_channels=3,
|
49 |
+
embed_dims=64,
|
50 |
+
num_stages=4,
|
51 |
+
num_layers=[3, 4, 6, 3],
|
52 |
+
num_heads=[1, 2, 5, 8],
|
53 |
+
patch_sizes=[7, 3, 3, 3],
|
54 |
+
sr_ratios=[8, 4, 2, 1],
|
55 |
+
out_indices=(0, 1, 2, 3),
|
56 |
+
mlp_ratio=4,
|
57 |
+
qkv_bias=True,
|
58 |
+
drop_rate=0.0,
|
59 |
+
attn_drop_rate=0.0,
|
60 |
+
drop_path_rate=0.1),
|
61 |
+
decode_head=dict(
|
62 |
+
type='SegformerHeadUnetFCHeadSingleStep',
|
63 |
+
pretrained=
|
64 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
65 |
+
dim=128,
|
66 |
+
out_dim=256,
|
67 |
+
unet_channels=272,
|
68 |
+
dim_mults=[1, 1, 1],
|
69 |
+
cat_embedding_dim=16,
|
70 |
+
in_channels=[64, 128, 320, 512],
|
71 |
+
in_index=[0, 1, 2, 3],
|
72 |
+
channels=256,
|
73 |
+
dropout_ratio=0.1,
|
74 |
+
num_classes=151,
|
75 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
76 |
+
align_corners=False,
|
77 |
+
ignore_index=0,
|
78 |
+
loss_decode=dict(
|
79 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
80 |
+
train_cfg=dict(),
|
81 |
+
test_cfg=dict(mode='whole'))
|
82 |
+
dataset_type = 'ADE20K151Dataset'
|
83 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
84 |
+
img_norm_cfg = dict(
|
85 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
86 |
+
crop_size = (512, 512)
|
87 |
+
train_pipeline = [
|
88 |
+
dict(type='LoadImageFromFile'),
|
89 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
90 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
91 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
92 |
+
dict(type='RandomFlip', prob=0.5),
|
93 |
+
dict(type='PhotoMetricDistortion'),
|
94 |
+
dict(
|
95 |
+
type='Normalize',
|
96 |
+
mean=[123.675, 116.28, 103.53],
|
97 |
+
std=[58.395, 57.12, 57.375],
|
98 |
+
to_rgb=True),
|
99 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
100 |
+
dict(type='DefaultFormatBundle'),
|
101 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
102 |
+
]
|
103 |
+
test_pipeline = [
|
104 |
+
dict(type='LoadImageFromFile'),
|
105 |
+
dict(
|
106 |
+
type='MultiScaleFlipAug',
|
107 |
+
img_scale=(2048, 512),
|
108 |
+
flip=False,
|
109 |
+
transforms=[
|
110 |
+
dict(type='Resize', keep_ratio=True),
|
111 |
+
dict(type='RandomFlip'),
|
112 |
+
dict(
|
113 |
+
type='Normalize',
|
114 |
+
mean=[123.675, 116.28, 103.53],
|
115 |
+
std=[58.395, 57.12, 57.375],
|
116 |
+
to_rgb=True),
|
117 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
118 |
+
dict(type='ImageToTensor', keys=['img']),
|
119 |
+
dict(type='Collect', keys=['img'])
|
120 |
+
])
|
121 |
+
]
|
122 |
+
data = dict(
|
123 |
+
samples_per_gpu=4,
|
124 |
+
workers_per_gpu=4,
|
125 |
+
train=dict(
|
126 |
+
type='ADE20K151Dataset',
|
127 |
+
data_root='data/ade/ADEChallengeData2016',
|
128 |
+
img_dir='images/training',
|
129 |
+
ann_dir='annotations/training',
|
130 |
+
pipeline=[
|
131 |
+
dict(type='LoadImageFromFile'),
|
132 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
133 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
134 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
135 |
+
dict(type='RandomFlip', prob=0.5),
|
136 |
+
dict(type='PhotoMetricDistortion'),
|
137 |
+
dict(
|
138 |
+
type='Normalize',
|
139 |
+
mean=[123.675, 116.28, 103.53],
|
140 |
+
std=[58.395, 57.12, 57.375],
|
141 |
+
to_rgb=True),
|
142 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
143 |
+
dict(type='DefaultFormatBundle'),
|
144 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
145 |
+
]),
|
146 |
+
val=dict(
|
147 |
+
type='ADE20K151Dataset',
|
148 |
+
data_root='data/ade/ADEChallengeData2016',
|
149 |
+
img_dir='images/validation',
|
150 |
+
ann_dir='annotations/validation',
|
151 |
+
pipeline=[
|
152 |
+
dict(type='LoadImageFromFile'),
|
153 |
+
dict(
|
154 |
+
type='MultiScaleFlipAug',
|
155 |
+
img_scale=(2048, 512),
|
156 |
+
flip=False,
|
157 |
+
transforms=[
|
158 |
+
dict(type='Resize', keep_ratio=True),
|
159 |
+
dict(type='RandomFlip'),
|
160 |
+
dict(
|
161 |
+
type='Normalize',
|
162 |
+
mean=[123.675, 116.28, 103.53],
|
163 |
+
std=[58.395, 57.12, 57.375],
|
164 |
+
to_rgb=True),
|
165 |
+
dict(
|
166 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
167 |
+
dict(type='ImageToTensor', keys=['img']),
|
168 |
+
dict(type='Collect', keys=['img'])
|
169 |
+
])
|
170 |
+
]),
|
171 |
+
test=dict(
|
172 |
+
type='ADE20K151Dataset',
|
173 |
+
data_root='data/ade/ADEChallengeData2016',
|
174 |
+
img_dir='images/validation',
|
175 |
+
ann_dir='annotations/validation',
|
176 |
+
pipeline=[
|
177 |
+
dict(type='LoadImageFromFile'),
|
178 |
+
dict(
|
179 |
+
type='MultiScaleFlipAug',
|
180 |
+
img_scale=(2048, 512),
|
181 |
+
flip=False,
|
182 |
+
transforms=[
|
183 |
+
dict(type='Resize', keep_ratio=True),
|
184 |
+
dict(type='RandomFlip'),
|
185 |
+
dict(
|
186 |
+
type='Normalize',
|
187 |
+
mean=[123.675, 116.28, 103.53],
|
188 |
+
std=[58.395, 57.12, 57.375],
|
189 |
+
to_rgb=True),
|
190 |
+
dict(
|
191 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
192 |
+
dict(type='ImageToTensor', keys=['img']),
|
193 |
+
dict(type='Collect', keys=['img'])
|
194 |
+
])
|
195 |
+
]))
|
196 |
+
log_config = dict(
|
197 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
198 |
+
dist_params = dict(backend='nccl')
|
199 |
+
log_level = 'INFO'
|
200 |
+
load_from = None
|
201 |
+
resume_from = None
|
202 |
+
workflow = [('train', 1)]
|
203 |
+
cudnn_benchmark = True
|
204 |
+
optimizer = dict(
|
205 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
206 |
+
optimizer_config = dict()
|
207 |
+
lr_config = dict(
|
208 |
+
policy='step',
|
209 |
+
warmup='linear',
|
210 |
+
warmup_iters=1000,
|
211 |
+
warmup_ratio=1e-06,
|
212 |
+
step=10000,
|
213 |
+
gamma=0.5,
|
214 |
+
min_lr=1e-06,
|
215 |
+
by_epoch=False)
|
216 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
217 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
218 |
+
evaluation = dict(
|
219 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
220 |
+
work_dir = './work_dirs/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151'
|
221 |
+
gpu_ids = range(0, 8)
|
222 |
+
auto_resume = True
|
223 |
+
|
224 |
+
2023-03-03 13:59:38,432 - mmseg - INFO - Set random seed to 97773280, deterministic: False
|
225 |
+
2023-03-03 13:59:38,757 - mmseg - INFO - Parameters in backbone freezed!
|
226 |
+
2023-03-03 13:59:38,758 - mmseg - INFO - Trainable parameters in SegformerHeadUnetFCHeadSingleStep: ['unet.init_conv.weight', 'unet.init_conv.bias', 'unet.time_mlp.1.weight', 'unet.time_mlp.1.bias', 'unet.time_mlp.3.weight', 'unet.time_mlp.3.bias', 'unet.downs.0.0.mlp.1.weight', 'unet.downs.0.0.mlp.1.bias', 'unet.downs.0.0.block1.proj.weight', 'unet.downs.0.0.block1.proj.bias', 'unet.downs.0.0.block1.norm.weight', 'unet.downs.0.0.block1.norm.bias', 'unet.downs.0.0.block2.proj.weight', 'unet.downs.0.0.block2.proj.bias', 'unet.downs.0.0.block2.norm.weight', 'unet.downs.0.0.block2.norm.bias', 'unet.downs.0.1.mlp.1.weight', 'unet.downs.0.1.mlp.1.bias', 'unet.downs.0.1.block1.proj.weight', 'unet.downs.0.1.block1.proj.bias', 'unet.downs.0.1.block1.norm.weight', 'unet.downs.0.1.block1.norm.bias', 'unet.downs.0.1.block2.proj.weight', 'unet.downs.0.1.block2.proj.bias', 'unet.downs.0.1.block2.norm.weight', 'unet.downs.0.1.block2.norm.bias', 'unet.downs.0.2.fn.fn.to_qkv.weight', 'unet.downs.0.2.fn.fn.to_out.0.weight', 'unet.downs.0.2.fn.fn.to_out.0.bias', 'unet.downs.0.2.fn.fn.to_out.1.g', 'unet.downs.0.2.fn.norm.g', 'unet.downs.0.3.weight', 'unet.downs.0.3.bias', 'unet.downs.1.0.mlp.1.weight', 'unet.downs.1.0.mlp.1.bias', 'unet.downs.1.0.block1.proj.weight', 'unet.downs.1.0.block1.proj.bias', 'unet.downs.1.0.block1.norm.weight', 'unet.downs.1.0.block1.norm.bias', 'unet.downs.1.0.block2.proj.weight', 'unet.downs.1.0.block2.proj.bias', 'unet.downs.1.0.block2.norm.weight', 'unet.downs.1.0.block2.norm.bias', 'unet.downs.1.1.mlp.1.weight', 'unet.downs.1.1.mlp.1.bias', 'unet.downs.1.1.block1.proj.weight', 'unet.downs.1.1.block1.proj.bias', 'unet.downs.1.1.block1.norm.weight', 'unet.downs.1.1.block1.norm.bias', 'unet.downs.1.1.block2.proj.weight', 'unet.downs.1.1.block2.proj.bias', 'unet.downs.1.1.block2.norm.weight', 'unet.downs.1.1.block2.norm.bias', 'unet.downs.1.2.fn.fn.to_qkv.weight', 'unet.downs.1.2.fn.fn.to_out.0.weight', 'unet.downs.1.2.fn.fn.to_out.0.bias', 'unet.downs.1.2.fn.fn.to_out.1.g', 'unet.downs.1.2.fn.norm.g', 'unet.downs.1.3.weight', 'unet.downs.1.3.bias', 'unet.downs.2.0.mlp.1.weight', 'unet.downs.2.0.mlp.1.bias', 'unet.downs.2.0.block1.proj.weight', 'unet.downs.2.0.block1.proj.bias', 'unet.downs.2.0.block1.norm.weight', 'unet.downs.2.0.block1.norm.bias', 'unet.downs.2.0.block2.proj.weight', 'unet.downs.2.0.block2.proj.bias', 'unet.downs.2.0.block2.norm.weight', 'unet.downs.2.0.block2.norm.bias', 'unet.downs.2.1.mlp.1.weight', 'unet.downs.2.1.mlp.1.bias', 'unet.downs.2.1.block1.proj.weight', 'unet.downs.2.1.block1.proj.bias', 'unet.downs.2.1.block1.norm.weight', 'unet.downs.2.1.block1.norm.bias', 'unet.downs.2.1.block2.proj.weight', 'unet.downs.2.1.block2.proj.bias', 'unet.downs.2.1.block2.norm.weight', 'unet.downs.2.1.block2.norm.bias', 'unet.downs.2.2.fn.fn.to_qkv.weight', 'unet.downs.2.2.fn.fn.to_out.0.weight', 'unet.downs.2.2.fn.fn.to_out.0.bias', 'unet.downs.2.2.fn.fn.to_out.1.g', 'unet.downs.2.2.fn.norm.g', 'unet.downs.2.3.weight', 'unet.downs.2.3.bias', 'unet.ups.0.0.mlp.1.weight', 'unet.ups.0.0.mlp.1.bias', 'unet.ups.0.0.block1.proj.weight', 'unet.ups.0.0.block1.proj.bias', 'unet.ups.0.0.block1.norm.weight', 'unet.ups.0.0.block1.norm.bias', 'unet.ups.0.0.block2.proj.weight', 'unet.ups.0.0.block2.proj.bias', 'unet.ups.0.0.block2.norm.weight', 'unet.ups.0.0.block2.norm.bias', 'unet.ups.0.0.res_conv.weight', 'unet.ups.0.0.res_conv.bias', 'unet.ups.0.1.mlp.1.weight', 'unet.ups.0.1.mlp.1.bias', 'unet.ups.0.1.block1.proj.weight', 'unet.ups.0.1.block1.proj.bias', 'unet.ups.0.1.block1.norm.weight', 'unet.ups.0.1.block1.norm.bias', 'unet.ups.0.1.block2.proj.weight', 'unet.ups.0.1.block2.proj.bias', 'unet.ups.0.1.block2.norm.weight', 'unet.ups.0.1.block2.norm.bias', 'unet.ups.0.1.res_conv.weight', 'unet.ups.0.1.res_conv.bias', 'unet.ups.0.2.fn.fn.to_qkv.weight', 'unet.ups.0.2.fn.fn.to_out.0.weight', 'unet.ups.0.2.fn.fn.to_out.0.bias', 'unet.ups.0.2.fn.fn.to_out.1.g', 'unet.ups.0.2.fn.norm.g', 'unet.ups.0.3.1.weight', 'unet.ups.0.3.1.bias', 'unet.ups.1.0.mlp.1.weight', 'unet.ups.1.0.mlp.1.bias', 'unet.ups.1.0.block1.proj.weight', 'unet.ups.1.0.block1.proj.bias', 'unet.ups.1.0.block1.norm.weight', 'unet.ups.1.0.block1.norm.bias', 'unet.ups.1.0.block2.proj.weight', 'unet.ups.1.0.block2.proj.bias', 'unet.ups.1.0.block2.norm.weight', 'unet.ups.1.0.block2.norm.bias', 'unet.ups.1.0.res_conv.weight', 'unet.ups.1.0.res_conv.bias', 'unet.ups.1.1.mlp.1.weight', 'unet.ups.1.1.mlp.1.bias', 'unet.ups.1.1.block1.proj.weight', 'unet.ups.1.1.block1.proj.bias', 'unet.ups.1.1.block1.norm.weight', 'unet.ups.1.1.block1.norm.bias', 'unet.ups.1.1.block2.proj.weight', 'unet.ups.1.1.block2.proj.bias', 'unet.ups.1.1.block2.norm.weight', 'unet.ups.1.1.block2.norm.bias', 'unet.ups.1.1.res_conv.weight', 'unet.ups.1.1.res_conv.bias', 'unet.ups.1.2.fn.fn.to_qkv.weight', 'unet.ups.1.2.fn.fn.to_out.0.weight', 'unet.ups.1.2.fn.fn.to_out.0.bias', 'unet.ups.1.2.fn.fn.to_out.1.g', 'unet.ups.1.2.fn.norm.g', 'unet.ups.1.3.1.weight', 'unet.ups.1.3.1.bias', 'unet.ups.2.0.mlp.1.weight', 'unet.ups.2.0.mlp.1.bias', 'unet.ups.2.0.block1.proj.weight', 'unet.ups.2.0.block1.proj.bias', 'unet.ups.2.0.block1.norm.weight', 'unet.ups.2.0.block1.norm.bias', 'unet.ups.2.0.block2.proj.weight', 'unet.ups.2.0.block2.proj.bias', 'unet.ups.2.0.block2.norm.weight', 'unet.ups.2.0.block2.norm.bias', 'unet.ups.2.0.res_conv.weight', 'unet.ups.2.0.res_conv.bias', 'unet.ups.2.1.mlp.1.weight', 'unet.ups.2.1.mlp.1.bias', 'unet.ups.2.1.block1.proj.weight', 'unet.ups.2.1.block1.proj.bias', 'unet.ups.2.1.block1.norm.weight', 'unet.ups.2.1.block1.norm.bias', 'unet.ups.2.1.block2.proj.weight', 'unet.ups.2.1.block2.proj.bias', 'unet.ups.2.1.block2.norm.weight', 'unet.ups.2.1.block2.norm.bias', 'unet.ups.2.1.res_conv.weight', 'unet.ups.2.1.res_conv.bias', 'unet.ups.2.2.fn.fn.to_qkv.weight', 'unet.ups.2.2.fn.fn.to_out.0.weight', 'unet.ups.2.2.fn.fn.to_out.0.bias', 'unet.ups.2.2.fn.fn.to_out.1.g', 'unet.ups.2.2.fn.norm.g', 'unet.ups.2.3.weight', 'unet.ups.2.3.bias', 'unet.mid_block1.mlp.1.weight', 'unet.mid_block1.mlp.1.bias', 'unet.mid_block1.block1.proj.weight', 'unet.mid_block1.block1.proj.bias', 'unet.mid_block1.block1.norm.weight', 'unet.mid_block1.block1.norm.bias', 'unet.mid_block1.block2.proj.weight', 'unet.mid_block1.block2.proj.bias', 'unet.mid_block1.block2.norm.weight', 'unet.mid_block1.block2.norm.bias', 'unet.mid_attn.fn.fn.to_qkv.weight', 'unet.mid_attn.fn.fn.to_out.weight', 'unet.mid_attn.fn.fn.to_out.bias', 'unet.mid_attn.fn.norm.g', 'unet.mid_block2.mlp.1.weight', 'unet.mid_block2.mlp.1.bias', 'unet.mid_block2.block1.proj.weight', 'unet.mid_block2.block1.proj.bias', 'unet.mid_block2.block1.norm.weight', 'unet.mid_block2.block1.norm.bias', 'unet.mid_block2.block2.proj.weight', 'unet.mid_block2.block2.proj.bias', 'unet.mid_block2.block2.norm.weight', 'unet.mid_block2.block2.norm.bias', 'unet.final_res_block.mlp.1.weight', 'unet.final_res_block.mlp.1.bias', 'unet.final_res_block.block1.proj.weight', 'unet.final_res_block.block1.proj.bias', 'unet.final_res_block.block1.norm.weight', 'unet.final_res_block.block1.norm.bias', 'unet.final_res_block.block2.proj.weight', 'unet.final_res_block.block2.proj.bias', 'unet.final_res_block.block2.norm.weight', 'unet.final_res_block.block2.norm.bias', 'unet.final_res_block.res_conv.weight', 'unet.final_res_block.res_conv.bias', 'unet.final_conv.weight', 'unet.final_conv.bias', 'conv_seg_new.weight', 'conv_seg_new.bias']
|
227 |
+
2023-03-03 13:59:38,758 - mmseg - INFO - Parameters in decode_head freezed!
|
228 |
+
2023-03-03 13:59:38,778 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
229 |
+
2023-03-03 13:59:39,026 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
230 |
+
|
231 |
+
unexpected key in source state_dict: decode_head.conv_seg.weight, decode_head.conv_seg.bias, decode_head.convs.0.conv.weight, decode_head.convs.0.bn.weight, decode_head.convs.0.bn.bias, decode_head.convs.0.bn.running_mean, decode_head.convs.0.bn.running_var, decode_head.convs.0.bn.num_batches_tracked, decode_head.convs.1.conv.weight, decode_head.convs.1.bn.weight, decode_head.convs.1.bn.bias, decode_head.convs.1.bn.running_mean, decode_head.convs.1.bn.running_var, decode_head.convs.1.bn.num_batches_tracked, decode_head.convs.2.conv.weight, decode_head.convs.2.bn.weight, decode_head.convs.2.bn.bias, decode_head.convs.2.bn.running_mean, decode_head.convs.2.bn.running_var, decode_head.convs.2.bn.num_batches_tracked, decode_head.convs.3.conv.weight, decode_head.convs.3.bn.weight, decode_head.convs.3.bn.bias, decode_head.convs.3.bn.running_mean, decode_head.convs.3.bn.running_var, decode_head.convs.3.bn.num_batches_tracked, decode_head.fusion_conv.conv.weight, decode_head.fusion_conv.bn.weight, decode_head.fusion_conv.bn.bias, decode_head.fusion_conv.bn.running_mean, decode_head.fusion_conv.bn.running_var, decode_head.fusion_conv.bn.num_batches_tracked
|
232 |
+
|
233 |
+
2023-03-03 13:59:39,040 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
234 |
+
2023-03-03 13:59:39,262 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
235 |
+
|
236 |
+
unexpected key in source state_dict: backbone.layers.0.0.projection.weight, backbone.layers.0.0.projection.bias, backbone.layers.0.0.norm.weight, backbone.layers.0.0.norm.bias, backbone.layers.0.1.0.norm1.weight, backbone.layers.0.1.0.norm1.bias, backbone.layers.0.1.0.attn.attn.in_proj_weight, backbone.layers.0.1.0.attn.attn.in_proj_bias, backbone.layers.0.1.0.attn.attn.out_proj.weight, backbone.layers.0.1.0.attn.attn.out_proj.bias, backbone.layers.0.1.0.attn.sr.weight, backbone.layers.0.1.0.attn.sr.bias, backbone.layers.0.1.0.attn.norm.weight, backbone.layers.0.1.0.attn.norm.bias, backbone.layers.0.1.0.norm2.weight, backbone.layers.0.1.0.norm2.bias, backbone.layers.0.1.0.ffn.layers.0.weight, backbone.layers.0.1.0.ffn.layers.0.bias, backbone.layers.0.1.0.ffn.layers.1.weight, backbone.layers.0.1.0.ffn.layers.1.bias, backbone.layers.0.1.0.ffn.layers.4.weight, backbone.layers.0.1.0.ffn.layers.4.bias, backbone.layers.0.1.1.norm1.weight, backbone.layers.0.1.1.norm1.bias, backbone.layers.0.1.1.attn.attn.in_proj_weight, backbone.layers.0.1.1.attn.attn.in_proj_bias, backbone.layers.0.1.1.attn.attn.out_proj.weight, backbone.layers.0.1.1.attn.attn.out_proj.bias, backbone.layers.0.1.1.attn.sr.weight, backbone.layers.0.1.1.attn.sr.bias, backbone.layers.0.1.1.attn.norm.weight, backbone.layers.0.1.1.attn.norm.bias, backbone.layers.0.1.1.norm2.weight, backbone.layers.0.1.1.norm2.bias, backbone.layers.0.1.1.ffn.layers.0.weight, backbone.layers.0.1.1.ffn.layers.0.bias, backbone.layers.0.1.1.ffn.layers.1.weight, backbone.layers.0.1.1.ffn.layers.1.bias, backbone.layers.0.1.1.ffn.layers.4.weight, backbone.layers.0.1.1.ffn.layers.4.bias, backbone.layers.0.1.2.norm1.weight, backbone.layers.0.1.2.norm1.bias, backbone.layers.0.1.2.attn.attn.in_proj_weight, backbone.layers.0.1.2.attn.attn.in_proj_bias, backbone.layers.0.1.2.attn.attn.out_proj.weight, backbone.layers.0.1.2.attn.attn.out_proj.bias, backbone.layers.0.1.2.attn.sr.weight, backbone.layers.0.1.2.attn.sr.bias, backbone.layers.0.1.2.attn.norm.weight, backbone.layers.0.1.2.attn.norm.bias, backbone.layers.0.1.2.norm2.weight, backbone.layers.0.1.2.norm2.bias, backbone.layers.0.1.2.ffn.layers.0.weight, backbone.layers.0.1.2.ffn.layers.0.bias, backbone.layers.0.1.2.ffn.layers.1.weight, backbone.layers.0.1.2.ffn.layers.1.bias, backbone.layers.0.1.2.ffn.layers.4.weight, backbone.layers.0.1.2.ffn.layers.4.bias, backbone.layers.0.2.weight, backbone.layers.0.2.bias, backbone.layers.1.0.projection.weight, backbone.layers.1.0.projection.bias, backbone.layers.1.0.norm.weight, backbone.layers.1.0.norm.bias, backbone.layers.1.1.0.norm1.weight, backbone.layers.1.1.0.norm1.bias, backbone.layers.1.1.0.attn.attn.in_proj_weight, backbone.layers.1.1.0.attn.attn.in_proj_bias, backbone.layers.1.1.0.attn.attn.out_proj.weight, backbone.layers.1.1.0.attn.attn.out_proj.bias, backbone.layers.1.1.0.attn.sr.weight, backbone.layers.1.1.0.attn.sr.bias, backbone.layers.1.1.0.attn.norm.weight, backbone.layers.1.1.0.attn.norm.bias, backbone.layers.1.1.0.norm2.weight, backbone.layers.1.1.0.norm2.bias, backbone.layers.1.1.0.ffn.layers.0.weight, backbone.layers.1.1.0.ffn.layers.0.bias, backbone.layers.1.1.0.ffn.layers.1.weight, backbone.layers.1.1.0.ffn.layers.1.bias, backbone.layers.1.1.0.ffn.layers.4.weight, backbone.layers.1.1.0.ffn.layers.4.bias, backbone.layers.1.1.1.norm1.weight, backbone.layers.1.1.1.norm1.bias, backbone.layers.1.1.1.attn.attn.in_proj_weight, backbone.layers.1.1.1.attn.attn.in_proj_bias, backbone.layers.1.1.1.attn.attn.out_proj.weight, backbone.layers.1.1.1.attn.attn.out_proj.bias, backbone.layers.1.1.1.attn.sr.weight, backbone.layers.1.1.1.attn.sr.bias, backbone.layers.1.1.1.attn.norm.weight, backbone.layers.1.1.1.attn.norm.bias, backbone.layers.1.1.1.norm2.weight, backbone.layers.1.1.1.norm2.bias, backbone.layers.1.1.1.ffn.layers.0.weight, backbone.layers.1.1.1.ffn.layers.0.bias, backbone.layers.1.1.1.ffn.layers.1.weight, backbone.layers.1.1.1.ffn.layers.1.bias, backbone.layers.1.1.1.ffn.layers.4.weight, backbone.layers.1.1.1.ffn.layers.4.bias, backbone.layers.1.1.2.norm1.weight, backbone.layers.1.1.2.norm1.bias, backbone.layers.1.1.2.attn.attn.in_proj_weight, backbone.layers.1.1.2.attn.attn.in_proj_bias, backbone.layers.1.1.2.attn.attn.out_proj.weight, backbone.layers.1.1.2.attn.attn.out_proj.bias, backbone.layers.1.1.2.attn.sr.weight, backbone.layers.1.1.2.attn.sr.bias, backbone.layers.1.1.2.attn.norm.weight, backbone.layers.1.1.2.attn.norm.bias, backbone.layers.1.1.2.norm2.weight, backbone.layers.1.1.2.norm2.bias, backbone.layers.1.1.2.ffn.layers.0.weight, backbone.layers.1.1.2.ffn.layers.0.bias, backbone.layers.1.1.2.ffn.layers.1.weight, backbone.layers.1.1.2.ffn.layers.1.bias, backbone.layers.1.1.2.ffn.layers.4.weight, backbone.layers.1.1.2.ffn.layers.4.bias, backbone.layers.1.1.3.norm1.weight, backbone.layers.1.1.3.norm1.bias, backbone.layers.1.1.3.attn.attn.in_proj_weight, backbone.layers.1.1.3.attn.attn.in_proj_bias, backbone.layers.1.1.3.attn.attn.out_proj.weight, backbone.layers.1.1.3.attn.attn.out_proj.bias, backbone.layers.1.1.3.attn.sr.weight, backbone.layers.1.1.3.attn.sr.bias, backbone.layers.1.1.3.attn.norm.weight, backbone.layers.1.1.3.attn.norm.bias, backbone.layers.1.1.3.norm2.weight, backbone.layers.1.1.3.norm2.bias, backbone.layers.1.1.3.ffn.layers.0.weight, backbone.layers.1.1.3.ffn.layers.0.bias, backbone.layers.1.1.3.ffn.layers.1.weight, backbone.layers.1.1.3.ffn.layers.1.bias, backbone.layers.1.1.3.ffn.layers.4.weight, backbone.layers.1.1.3.ffn.layers.4.bias, backbone.layers.1.2.weight, backbone.layers.1.2.bias, backbone.layers.2.0.projection.weight, backbone.layers.2.0.projection.bias, backbone.layers.2.0.norm.weight, backbone.layers.2.0.norm.bias, backbone.layers.2.1.0.norm1.weight, backbone.layers.2.1.0.norm1.bias, backbone.layers.2.1.0.attn.attn.in_proj_weight, backbone.layers.2.1.0.attn.attn.in_proj_bias, backbone.layers.2.1.0.attn.attn.out_proj.weight, backbone.layers.2.1.0.attn.attn.out_proj.bias, backbone.layers.2.1.0.attn.sr.weight, backbone.layers.2.1.0.attn.sr.bias, backbone.layers.2.1.0.attn.norm.weight, backbone.layers.2.1.0.attn.norm.bias, backbone.layers.2.1.0.norm2.weight, backbone.layers.2.1.0.norm2.bias, backbone.layers.2.1.0.ffn.layers.0.weight, backbone.layers.2.1.0.ffn.layers.0.bias, backbone.layers.2.1.0.ffn.layers.1.weight, backbone.layers.2.1.0.ffn.layers.1.bias, backbone.layers.2.1.0.ffn.layers.4.weight, backbone.layers.2.1.0.ffn.layers.4.bias, backbone.layers.2.1.1.norm1.weight, backbone.layers.2.1.1.norm1.bias, backbone.layers.2.1.1.attn.attn.in_proj_weight, backbone.layers.2.1.1.attn.attn.in_proj_bias, backbone.layers.2.1.1.attn.attn.out_proj.weight, backbone.layers.2.1.1.attn.attn.out_proj.bias, backbone.layers.2.1.1.attn.sr.weight, backbone.layers.2.1.1.attn.sr.bias, backbone.layers.2.1.1.attn.norm.weight, backbone.layers.2.1.1.attn.norm.bias, backbone.layers.2.1.1.norm2.weight, backbone.layers.2.1.1.norm2.bias, backbone.layers.2.1.1.ffn.layers.0.weight, backbone.layers.2.1.1.ffn.layers.0.bias, backbone.layers.2.1.1.ffn.layers.1.weight, backbone.layers.2.1.1.ffn.layers.1.bias, backbone.layers.2.1.1.ffn.layers.4.weight, backbone.layers.2.1.1.ffn.layers.4.bias, backbone.layers.2.1.2.norm1.weight, backbone.layers.2.1.2.norm1.bias, backbone.layers.2.1.2.attn.attn.in_proj_weight, backbone.layers.2.1.2.attn.attn.in_proj_bias, backbone.layers.2.1.2.attn.attn.out_proj.weight, backbone.layers.2.1.2.attn.attn.out_proj.bias, backbone.layers.2.1.2.attn.sr.weight, backbone.layers.2.1.2.attn.sr.bias, backbone.layers.2.1.2.attn.norm.weight, backbone.layers.2.1.2.attn.norm.bias, backbone.layers.2.1.2.norm2.weight, backbone.layers.2.1.2.norm2.bias, backbone.layers.2.1.2.ffn.layers.0.weight, backbone.layers.2.1.2.ffn.layers.0.bias, backbone.layers.2.1.2.ffn.layers.1.weight, backbone.layers.2.1.2.ffn.layers.1.bias, backbone.layers.2.1.2.ffn.layers.4.weight, backbone.layers.2.1.2.ffn.layers.4.bias, backbone.layers.2.1.3.norm1.weight, backbone.layers.2.1.3.norm1.bias, backbone.layers.2.1.3.attn.attn.in_proj_weight, backbone.layers.2.1.3.attn.attn.in_proj_bias, backbone.layers.2.1.3.attn.attn.out_proj.weight, backbone.layers.2.1.3.attn.attn.out_proj.bias, backbone.layers.2.1.3.attn.sr.weight, backbone.layers.2.1.3.attn.sr.bias, backbone.layers.2.1.3.attn.norm.weight, backbone.layers.2.1.3.attn.norm.bias, backbone.layers.2.1.3.norm2.weight, backbone.layers.2.1.3.norm2.bias, backbone.layers.2.1.3.ffn.layers.0.weight, backbone.layers.2.1.3.ffn.layers.0.bias, backbone.layers.2.1.3.ffn.layers.1.weight, backbone.layers.2.1.3.ffn.layers.1.bias, backbone.layers.2.1.3.ffn.layers.4.weight, backbone.layers.2.1.3.ffn.layers.4.bias, backbone.layers.2.1.4.norm1.weight, backbone.layers.2.1.4.norm1.bias, backbone.layers.2.1.4.attn.attn.in_proj_weight, backbone.layers.2.1.4.attn.attn.in_proj_bias, backbone.layers.2.1.4.attn.attn.out_proj.weight, backbone.layers.2.1.4.attn.attn.out_proj.bias, backbone.layers.2.1.4.attn.sr.weight, backbone.layers.2.1.4.attn.sr.bias, backbone.layers.2.1.4.attn.norm.weight, backbone.layers.2.1.4.attn.norm.bias, backbone.layers.2.1.4.norm2.weight, backbone.layers.2.1.4.norm2.bias, backbone.layers.2.1.4.ffn.layers.0.weight, backbone.layers.2.1.4.ffn.layers.0.bias, backbone.layers.2.1.4.ffn.layers.1.weight, backbone.layers.2.1.4.ffn.layers.1.bias, backbone.layers.2.1.4.ffn.layers.4.weight, backbone.layers.2.1.4.ffn.layers.4.bias, backbone.layers.2.1.5.norm1.weight, backbone.layers.2.1.5.norm1.bias, backbone.layers.2.1.5.attn.attn.in_proj_weight, backbone.layers.2.1.5.attn.attn.in_proj_bias, backbone.layers.2.1.5.attn.attn.out_proj.weight, backbone.layers.2.1.5.attn.attn.out_proj.bias, backbone.layers.2.1.5.attn.sr.weight, backbone.layers.2.1.5.attn.sr.bias, backbone.layers.2.1.5.attn.norm.weight, backbone.layers.2.1.5.attn.norm.bias, backbone.layers.2.1.5.norm2.weight, backbone.layers.2.1.5.norm2.bias, backbone.layers.2.1.5.ffn.layers.0.weight, backbone.layers.2.1.5.ffn.layers.0.bias, backbone.layers.2.1.5.ffn.layers.1.weight, backbone.layers.2.1.5.ffn.layers.1.bias, backbone.layers.2.1.5.ffn.layers.4.weight, backbone.layers.2.1.5.ffn.layers.4.bias, backbone.layers.2.2.weight, backbone.layers.2.2.bias, backbone.layers.3.0.projection.weight, backbone.layers.3.0.projection.bias, backbone.layers.3.0.norm.weight, backbone.layers.3.0.norm.bias, backbone.layers.3.1.0.norm1.weight, backbone.layers.3.1.0.norm1.bias, backbone.layers.3.1.0.attn.attn.in_proj_weight, backbone.layers.3.1.0.attn.attn.in_proj_bias, backbone.layers.3.1.0.attn.attn.out_proj.weight, backbone.layers.3.1.0.attn.attn.out_proj.bias, backbone.layers.3.1.0.norm2.weight, backbone.layers.3.1.0.norm2.bias, backbone.layers.3.1.0.ffn.layers.0.weight, backbone.layers.3.1.0.ffn.layers.0.bias, backbone.layers.3.1.0.ffn.layers.1.weight, backbone.layers.3.1.0.ffn.layers.1.bias, backbone.layers.3.1.0.ffn.layers.4.weight, backbone.layers.3.1.0.ffn.layers.4.bias, backbone.layers.3.1.1.norm1.weight, backbone.layers.3.1.1.norm1.bias, backbone.layers.3.1.1.attn.attn.in_proj_weight, backbone.layers.3.1.1.attn.attn.in_proj_bias, backbone.layers.3.1.1.attn.attn.out_proj.weight, backbone.layers.3.1.1.attn.attn.out_proj.bias, backbone.layers.3.1.1.norm2.weight, backbone.layers.3.1.1.norm2.bias, backbone.layers.3.1.1.ffn.layers.0.weight, backbone.layers.3.1.1.ffn.layers.0.bias, backbone.layers.3.1.1.ffn.layers.1.weight, backbone.layers.3.1.1.ffn.layers.1.bias, backbone.layers.3.1.1.ffn.layers.4.weight, backbone.layers.3.1.1.ffn.layers.4.bias, backbone.layers.3.1.2.norm1.weight, backbone.layers.3.1.2.norm1.bias, backbone.layers.3.1.2.attn.attn.in_proj_weight, backbone.layers.3.1.2.attn.attn.in_proj_bias, backbone.layers.3.1.2.attn.attn.out_proj.weight, backbone.layers.3.1.2.attn.attn.out_proj.bias, backbone.layers.3.1.2.norm2.weight, backbone.layers.3.1.2.norm2.bias, backbone.layers.3.1.2.ffn.layers.0.weight, backbone.layers.3.1.2.ffn.layers.0.bias, backbone.layers.3.1.2.ffn.layers.1.weight, backbone.layers.3.1.2.ffn.layers.1.bias, backbone.layers.3.1.2.ffn.layers.4.weight, backbone.layers.3.1.2.ffn.layers.4.bias, backbone.layers.3.2.weight, backbone.layers.3.2.bias
|
237 |
+
|
238 |
+
missing keys in source state_dict: unet.init_conv.weight, unet.init_conv.bias, unet.time_mlp.1.weight, unet.time_mlp.1.bias, unet.time_mlp.3.weight, unet.time_mlp.3.bias, unet.downs.0.0.mlp.1.weight, unet.downs.0.0.mlp.1.bias, unet.downs.0.0.block1.proj.weight, unet.downs.0.0.block1.proj.bias, unet.downs.0.0.block1.norm.weight, unet.downs.0.0.block1.norm.bias, unet.downs.0.0.block2.proj.weight, unet.downs.0.0.block2.proj.bias, unet.downs.0.0.block2.norm.weight, unet.downs.0.0.block2.norm.bias, unet.downs.0.1.mlp.1.weight, unet.downs.0.1.mlp.1.bias, unet.downs.0.1.block1.proj.weight, unet.downs.0.1.block1.proj.bias, unet.downs.0.1.block1.norm.weight, unet.downs.0.1.block1.norm.bias, unet.downs.0.1.block2.proj.weight, unet.downs.0.1.block2.proj.bias, unet.downs.0.1.block2.norm.weight, unet.downs.0.1.block2.norm.bias, unet.downs.0.2.fn.fn.to_qkv.weight, unet.downs.0.2.fn.fn.to_out.0.weight, unet.downs.0.2.fn.fn.to_out.0.bias, unet.downs.0.2.fn.fn.to_out.1.g, unet.downs.0.2.fn.norm.g, unet.downs.0.3.weight, unet.downs.0.3.bias, unet.downs.1.0.mlp.1.weight, unet.downs.1.0.mlp.1.bias, unet.downs.1.0.block1.proj.weight, unet.downs.1.0.block1.proj.bias, unet.downs.1.0.block1.norm.weight, unet.downs.1.0.block1.norm.bias, unet.downs.1.0.block2.proj.weight, unet.downs.1.0.block2.proj.bias, unet.downs.1.0.block2.norm.weight, unet.downs.1.0.block2.norm.bias, unet.downs.1.1.mlp.1.weight, unet.downs.1.1.mlp.1.bias, unet.downs.1.1.block1.proj.weight, unet.downs.1.1.block1.proj.bias, unet.downs.1.1.block1.norm.weight, unet.downs.1.1.block1.norm.bias, unet.downs.1.1.block2.proj.weight, unet.downs.1.1.block2.proj.bias, unet.downs.1.1.block2.norm.weight, unet.downs.1.1.block2.norm.bias, unet.downs.1.2.fn.fn.to_qkv.weight, unet.downs.1.2.fn.fn.to_out.0.weight, unet.downs.1.2.fn.fn.to_out.0.bias, unet.downs.1.2.fn.fn.to_out.1.g, unet.downs.1.2.fn.norm.g, unet.downs.1.3.weight, unet.downs.1.3.bias, unet.downs.2.0.mlp.1.weight, unet.downs.2.0.mlp.1.bias, unet.downs.2.0.block1.proj.weight, unet.downs.2.0.block1.proj.bias, unet.downs.2.0.block1.norm.weight, unet.downs.2.0.block1.norm.bias, unet.downs.2.0.block2.proj.weight, unet.downs.2.0.block2.proj.bias, unet.downs.2.0.block2.norm.weight, unet.downs.2.0.block2.norm.bias, unet.downs.2.1.mlp.1.weight, unet.downs.2.1.mlp.1.bias, unet.downs.2.1.block1.proj.weight, unet.downs.2.1.block1.proj.bias, unet.downs.2.1.block1.norm.weight, unet.downs.2.1.block1.norm.bias, unet.downs.2.1.block2.proj.weight, unet.downs.2.1.block2.proj.bias, unet.downs.2.1.block2.norm.weight, unet.downs.2.1.block2.norm.bias, unet.downs.2.2.fn.fn.to_qkv.weight, unet.downs.2.2.fn.fn.to_out.0.weight, unet.downs.2.2.fn.fn.to_out.0.bias, unet.downs.2.2.fn.fn.to_out.1.g, unet.downs.2.2.fn.norm.g, unet.downs.2.3.weight, unet.downs.2.3.bias, unet.ups.0.0.mlp.1.weight, unet.ups.0.0.mlp.1.bias, unet.ups.0.0.block1.proj.weight, unet.ups.0.0.block1.proj.bias, unet.ups.0.0.block1.norm.weight, unet.ups.0.0.block1.norm.bias, unet.ups.0.0.block2.proj.weight, unet.ups.0.0.block2.proj.bias, unet.ups.0.0.block2.norm.weight, unet.ups.0.0.block2.norm.bias, unet.ups.0.0.res_conv.weight, unet.ups.0.0.res_conv.bias, unet.ups.0.1.mlp.1.weight, unet.ups.0.1.mlp.1.bias, unet.ups.0.1.block1.proj.weight, unet.ups.0.1.block1.proj.bias, unet.ups.0.1.block1.norm.weight, unet.ups.0.1.block1.norm.bias, unet.ups.0.1.block2.proj.weight, unet.ups.0.1.block2.proj.bias, unet.ups.0.1.block2.norm.weight, unet.ups.0.1.block2.norm.bias, unet.ups.0.1.res_conv.weight, unet.ups.0.1.res_conv.bias, unet.ups.0.2.fn.fn.to_qkv.weight, unet.ups.0.2.fn.fn.to_out.0.weight, unet.ups.0.2.fn.fn.to_out.0.bias, unet.ups.0.2.fn.fn.to_out.1.g, unet.ups.0.2.fn.norm.g, unet.ups.0.3.1.weight, unet.ups.0.3.1.bias, unet.ups.1.0.mlp.1.weight, unet.ups.1.0.mlp.1.bias, unet.ups.1.0.block1.proj.weight, unet.ups.1.0.block1.proj.bias, unet.ups.1.0.block1.norm.weight, unet.ups.1.0.block1.norm.bias, unet.ups.1.0.block2.proj.weight, unet.ups.1.0.block2.proj.bias, unet.ups.1.0.block2.norm.weight, unet.ups.1.0.block2.norm.bias, unet.ups.1.0.res_conv.weight, unet.ups.1.0.res_conv.bias, unet.ups.1.1.mlp.1.weight, unet.ups.1.1.mlp.1.bias, unet.ups.1.1.block1.proj.weight, unet.ups.1.1.block1.proj.bias, unet.ups.1.1.block1.norm.weight, unet.ups.1.1.block1.norm.bias, unet.ups.1.1.block2.proj.weight, unet.ups.1.1.block2.proj.bias, unet.ups.1.1.block2.norm.weight, unet.ups.1.1.block2.norm.bias, unet.ups.1.1.res_conv.weight, unet.ups.1.1.res_conv.bias, unet.ups.1.2.fn.fn.to_qkv.weight, unet.ups.1.2.fn.fn.to_out.0.weight, unet.ups.1.2.fn.fn.to_out.0.bias, unet.ups.1.2.fn.fn.to_out.1.g, unet.ups.1.2.fn.norm.g, unet.ups.1.3.1.weight, unet.ups.1.3.1.bias, unet.ups.2.0.mlp.1.weight, unet.ups.2.0.mlp.1.bias, unet.ups.2.0.block1.proj.weight, unet.ups.2.0.block1.proj.bias, unet.ups.2.0.block1.norm.weight, unet.ups.2.0.block1.norm.bias, unet.ups.2.0.block2.proj.weight, unet.ups.2.0.block2.proj.bias, unet.ups.2.0.block2.norm.weight, unet.ups.2.0.block2.norm.bias, unet.ups.2.0.res_conv.weight, unet.ups.2.0.res_conv.bias, unet.ups.2.1.mlp.1.weight, unet.ups.2.1.mlp.1.bias, unet.ups.2.1.block1.proj.weight, unet.ups.2.1.block1.proj.bias, unet.ups.2.1.block1.norm.weight, unet.ups.2.1.block1.norm.bias, unet.ups.2.1.block2.proj.weight, unet.ups.2.1.block2.proj.bias, unet.ups.2.1.block2.norm.weight, unet.ups.2.1.block2.norm.bias, unet.ups.2.1.res_conv.weight, unet.ups.2.1.res_conv.bias, unet.ups.2.2.fn.fn.to_qkv.weight, unet.ups.2.2.fn.fn.to_out.0.weight, unet.ups.2.2.fn.fn.to_out.0.bias, unet.ups.2.2.fn.fn.to_out.1.g, unet.ups.2.2.fn.norm.g, unet.ups.2.3.weight, unet.ups.2.3.bias, unet.mid_block1.mlp.1.weight, unet.mid_block1.mlp.1.bias, unet.mid_block1.block1.proj.weight, unet.mid_block1.block1.proj.bias, unet.mid_block1.block1.norm.weight, unet.mid_block1.block1.norm.bias, unet.mid_block1.block2.proj.weight, unet.mid_block1.block2.proj.bias, unet.mid_block1.block2.norm.weight, unet.mid_block1.block2.norm.bias, unet.mid_attn.fn.fn.to_qkv.weight, unet.mid_attn.fn.fn.to_out.weight, unet.mid_attn.fn.fn.to_out.bias, unet.mid_attn.fn.norm.g, unet.mid_block2.mlp.1.weight, unet.mid_block2.mlp.1.bias, unet.mid_block2.block1.proj.weight, unet.mid_block2.block1.proj.bias, unet.mid_block2.block1.norm.weight, unet.mid_block2.block1.norm.bias, unet.mid_block2.block2.proj.weight, unet.mid_block2.block2.proj.bias, unet.mid_block2.block2.norm.weight, unet.mid_block2.block2.norm.bias, unet.final_res_block.mlp.1.weight, unet.final_res_block.mlp.1.bias, unet.final_res_block.block1.proj.weight, unet.final_res_block.block1.proj.bias, unet.final_res_block.block1.norm.weight, unet.final_res_block.block1.norm.bias, unet.final_res_block.block2.proj.weight, unet.final_res_block.block2.proj.bias, unet.final_res_block.block2.norm.weight, unet.final_res_block.block2.norm.bias, unet.final_res_block.res_conv.weight, unet.final_res_block.res_conv.bias, unet.final_conv.weight, unet.final_conv.bias, conv_seg_new.weight, conv_seg_new.bias, embed.weight
|
239 |
+
|
240 |
+
2023-03-03 13:59:39,286 - mmseg - INFO - EncoderDecoderFreeze(
|
241 |
+
(backbone): MixVisionTransformerCustomInitWeights(
|
242 |
+
(layers): ModuleList(
|
243 |
+
(0): ModuleList(
|
244 |
+
(0): PatchEmbed(
|
245 |
+
(projection): Conv2d(3, 64, kernel_size=(7, 7), stride=(4, 4), padding=(3, 3))
|
246 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
247 |
+
)
|
248 |
+
(1): ModuleList(
|
249 |
+
(0): TransformerEncoderLayer(
|
250 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
251 |
+
(attn): EfficientMultiheadAttention(
|
252 |
+
(attn): MultiheadAttention(
|
253 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
254 |
+
)
|
255 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
256 |
+
(dropout_layer): DropPath()
|
257 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
258 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
259 |
+
)
|
260 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
261 |
+
(ffn): MixFFN(
|
262 |
+
(activate): GELU(approximate='none')
|
263 |
+
(layers): Sequential(
|
264 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
265 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
266 |
+
(2): GELU(approximate='none')
|
267 |
+
(3): Dropout(p=0.0, inplace=False)
|
268 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
269 |
+
(5): Dropout(p=0.0, inplace=False)
|
270 |
+
)
|
271 |
+
(dropout_layer): DropPath()
|
272 |
+
)
|
273 |
+
)
|
274 |
+
(1): TransformerEncoderLayer(
|
275 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
276 |
+
(attn): EfficientMultiheadAttention(
|
277 |
+
(attn): MultiheadAttention(
|
278 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
279 |
+
)
|
280 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
281 |
+
(dropout_layer): DropPath()
|
282 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
283 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
284 |
+
)
|
285 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
286 |
+
(ffn): MixFFN(
|
287 |
+
(activate): GELU(approximate='none')
|
288 |
+
(layers): Sequential(
|
289 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
290 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
291 |
+
(2): GELU(approximate='none')
|
292 |
+
(3): Dropout(p=0.0, inplace=False)
|
293 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
294 |
+
(5): Dropout(p=0.0, inplace=False)
|
295 |
+
)
|
296 |
+
(dropout_layer): DropPath()
|
297 |
+
)
|
298 |
+
)
|
299 |
+
(2): TransformerEncoderLayer(
|
300 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
301 |
+
(attn): EfficientMultiheadAttention(
|
302 |
+
(attn): MultiheadAttention(
|
303 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
304 |
+
)
|
305 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
306 |
+
(dropout_layer): DropPath()
|
307 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
308 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
309 |
+
)
|
310 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
311 |
+
(ffn): MixFFN(
|
312 |
+
(activate): GELU(approximate='none')
|
313 |
+
(layers): Sequential(
|
314 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
315 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
316 |
+
(2): GELU(approximate='none')
|
317 |
+
(3): Dropout(p=0.0, inplace=False)
|
318 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
319 |
+
(5): Dropout(p=0.0, inplace=False)
|
320 |
+
)
|
321 |
+
(dropout_layer): DropPath()
|
322 |
+
)
|
323 |
+
)
|
324 |
+
)
|
325 |
+
(2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
326 |
+
)
|
327 |
+
(1): ModuleList(
|
328 |
+
(0): PatchEmbed(
|
329 |
+
(projection): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
330 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
331 |
+
)
|
332 |
+
(1): ModuleList(
|
333 |
+
(0): TransformerEncoderLayer(
|
334 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
335 |
+
(attn): EfficientMultiheadAttention(
|
336 |
+
(attn): MultiheadAttention(
|
337 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
338 |
+
)
|
339 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
340 |
+
(dropout_layer): DropPath()
|
341 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
342 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
343 |
+
)
|
344 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
345 |
+
(ffn): MixFFN(
|
346 |
+
(activate): GELU(approximate='none')
|
347 |
+
(layers): Sequential(
|
348 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
349 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
350 |
+
(2): GELU(approximate='none')
|
351 |
+
(3): Dropout(p=0.0, inplace=False)
|
352 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
353 |
+
(5): Dropout(p=0.0, inplace=False)
|
354 |
+
)
|
355 |
+
(dropout_layer): DropPath()
|
356 |
+
)
|
357 |
+
)
|
358 |
+
(1): TransformerEncoderLayer(
|
359 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
360 |
+
(attn): EfficientMultiheadAttention(
|
361 |
+
(attn): MultiheadAttention(
|
362 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
363 |
+
)
|
364 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
365 |
+
(dropout_layer): DropPath()
|
366 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
367 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
368 |
+
)
|
369 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
370 |
+
(ffn): MixFFN(
|
371 |
+
(activate): GELU(approximate='none')
|
372 |
+
(layers): Sequential(
|
373 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
374 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
375 |
+
(2): GELU(approximate='none')
|
376 |
+
(3): Dropout(p=0.0, inplace=False)
|
377 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
378 |
+
(5): Dropout(p=0.0, inplace=False)
|
379 |
+
)
|
380 |
+
(dropout_layer): DropPath()
|
381 |
+
)
|
382 |
+
)
|
383 |
+
(2): TransformerEncoderLayer(
|
384 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
385 |
+
(attn): EfficientMultiheadAttention(
|
386 |
+
(attn): MultiheadAttention(
|
387 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
388 |
+
)
|
389 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
390 |
+
(dropout_layer): DropPath()
|
391 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
392 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
393 |
+
)
|
394 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
395 |
+
(ffn): MixFFN(
|
396 |
+
(activate): GELU(approximate='none')
|
397 |
+
(layers): Sequential(
|
398 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
399 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
400 |
+
(2): GELU(approximate='none')
|
401 |
+
(3): Dropout(p=0.0, inplace=False)
|
402 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
403 |
+
(5): Dropout(p=0.0, inplace=False)
|
404 |
+
)
|
405 |
+
(dropout_layer): DropPath()
|
406 |
+
)
|
407 |
+
)
|
408 |
+
(3): TransformerEncoderLayer(
|
409 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
410 |
+
(attn): EfficientMultiheadAttention(
|
411 |
+
(attn): MultiheadAttention(
|
412 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
413 |
+
)
|
414 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
415 |
+
(dropout_layer): DropPath()
|
416 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
417 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
418 |
+
)
|
419 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
420 |
+
(ffn): MixFFN(
|
421 |
+
(activate): GELU(approximate='none')
|
422 |
+
(layers): Sequential(
|
423 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
424 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
425 |
+
(2): GELU(approximate='none')
|
426 |
+
(3): Dropout(p=0.0, inplace=False)
|
427 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
428 |
+
(5): Dropout(p=0.0, inplace=False)
|
429 |
+
)
|
430 |
+
(dropout_layer): DropPath()
|
431 |
+
)
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
435 |
+
)
|
436 |
+
(2): ModuleList(
|
437 |
+
(0): PatchEmbed(
|
438 |
+
(projection): Conv2d(128, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
439 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
440 |
+
)
|
441 |
+
(1): ModuleList(
|
442 |
+
(0): TransformerEncoderLayer(
|
443 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
444 |
+
(attn): EfficientMultiheadAttention(
|
445 |
+
(attn): MultiheadAttention(
|
446 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
447 |
+
)
|
448 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
449 |
+
(dropout_layer): DropPath()
|
450 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
451 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
452 |
+
)
|
453 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
454 |
+
(ffn): MixFFN(
|
455 |
+
(activate): GELU(approximate='none')
|
456 |
+
(layers): Sequential(
|
457 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
458 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
459 |
+
(2): GELU(approximate='none')
|
460 |
+
(3): Dropout(p=0.0, inplace=False)
|
461 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
462 |
+
(5): Dropout(p=0.0, inplace=False)
|
463 |
+
)
|
464 |
+
(dropout_layer): DropPath()
|
465 |
+
)
|
466 |
+
)
|
467 |
+
(1): TransformerEncoderLayer(
|
468 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
469 |
+
(attn): EfficientMultiheadAttention(
|
470 |
+
(attn): MultiheadAttention(
|
471 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
472 |
+
)
|
473 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
474 |
+
(dropout_layer): DropPath()
|
475 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
476 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
477 |
+
)
|
478 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
479 |
+
(ffn): MixFFN(
|
480 |
+
(activate): GELU(approximate='none')
|
481 |
+
(layers): Sequential(
|
482 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
483 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
484 |
+
(2): GELU(approximate='none')
|
485 |
+
(3): Dropout(p=0.0, inplace=False)
|
486 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
487 |
+
(5): Dropout(p=0.0, inplace=False)
|
488 |
+
)
|
489 |
+
(dropout_layer): DropPath()
|
490 |
+
)
|
491 |
+
)
|
492 |
+
(2): TransformerEncoderLayer(
|
493 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
494 |
+
(attn): EfficientMultiheadAttention(
|
495 |
+
(attn): MultiheadAttention(
|
496 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
497 |
+
)
|
498 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
499 |
+
(dropout_layer): DropPath()
|
500 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
501 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
502 |
+
)
|
503 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
504 |
+
(ffn): MixFFN(
|
505 |
+
(activate): GELU(approximate='none')
|
506 |
+
(layers): Sequential(
|
507 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
508 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
509 |
+
(2): GELU(approximate='none')
|
510 |
+
(3): Dropout(p=0.0, inplace=False)
|
511 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
512 |
+
(5): Dropout(p=0.0, inplace=False)
|
513 |
+
)
|
514 |
+
(dropout_layer): DropPath()
|
515 |
+
)
|
516 |
+
)
|
517 |
+
(3): TransformerEncoderLayer(
|
518 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
519 |
+
(attn): EfficientMultiheadAttention(
|
520 |
+
(attn): MultiheadAttention(
|
521 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
522 |
+
)
|
523 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
524 |
+
(dropout_layer): DropPath()
|
525 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
526 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
527 |
+
)
|
528 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
529 |
+
(ffn): MixFFN(
|
530 |
+
(activate): GELU(approximate='none')
|
531 |
+
(layers): Sequential(
|
532 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
533 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
534 |
+
(2): GELU(approximate='none')
|
535 |
+
(3): Dropout(p=0.0, inplace=False)
|
536 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
537 |
+
(5): Dropout(p=0.0, inplace=False)
|
538 |
+
)
|
539 |
+
(dropout_layer): DropPath()
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(4): TransformerEncoderLayer(
|
543 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
544 |
+
(attn): EfficientMultiheadAttention(
|
545 |
+
(attn): MultiheadAttention(
|
546 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
547 |
+
)
|
548 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
549 |
+
(dropout_layer): DropPath()
|
550 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
551 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
552 |
+
)
|
553 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
554 |
+
(ffn): MixFFN(
|
555 |
+
(activate): GELU(approximate='none')
|
556 |
+
(layers): Sequential(
|
557 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
558 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
559 |
+
(2): GELU(approximate='none')
|
560 |
+
(3): Dropout(p=0.0, inplace=False)
|
561 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
562 |
+
(5): Dropout(p=0.0, inplace=False)
|
563 |
+
)
|
564 |
+
(dropout_layer): DropPath()
|
565 |
+
)
|
566 |
+
)
|
567 |
+
(5): TransformerEncoderLayer(
|
568 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
569 |
+
(attn): EfficientMultiheadAttention(
|
570 |
+
(attn): MultiheadAttention(
|
571 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
572 |
+
)
|
573 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
574 |
+
(dropout_layer): DropPath()
|
575 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
576 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
577 |
+
)
|
578 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
579 |
+
(ffn): MixFFN(
|
580 |
+
(activate): GELU(approximate='none')
|
581 |
+
(layers): Sequential(
|
582 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
583 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
584 |
+
(2): GELU(approximate='none')
|
585 |
+
(3): Dropout(p=0.0, inplace=False)
|
586 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
587 |
+
(5): Dropout(p=0.0, inplace=False)
|
588 |
+
)
|
589 |
+
(dropout_layer): DropPath()
|
590 |
+
)
|
591 |
+
)
|
592 |
+
)
|
593 |
+
(2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
594 |
+
)
|
595 |
+
(3): ModuleList(
|
596 |
+
(0): PatchEmbed(
|
597 |
+
(projection): Conv2d(320, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
598 |
+
(norm): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
599 |
+
)
|
600 |
+
(1): ModuleList(
|
601 |
+
(0): TransformerEncoderLayer(
|
602 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
603 |
+
(attn): EfficientMultiheadAttention(
|
604 |
+
(attn): MultiheadAttention(
|
605 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
606 |
+
)
|
607 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
608 |
+
(dropout_layer): DropPath()
|
609 |
+
)
|
610 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
611 |
+
(ffn): MixFFN(
|
612 |
+
(activate): GELU(approximate='none')
|
613 |
+
(layers): Sequential(
|
614 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
615 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
616 |
+
(2): GELU(approximate='none')
|
617 |
+
(3): Dropout(p=0.0, inplace=False)
|
618 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
619 |
+
(5): Dropout(p=0.0, inplace=False)
|
620 |
+
)
|
621 |
+
(dropout_layer): DropPath()
|
622 |
+
)
|
623 |
+
)
|
624 |
+
(1): TransformerEncoderLayer(
|
625 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
626 |
+
(attn): EfficientMultiheadAttention(
|
627 |
+
(attn): MultiheadAttention(
|
628 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
629 |
+
)
|
630 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
631 |
+
(dropout_layer): DropPath()
|
632 |
+
)
|
633 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
634 |
+
(ffn): MixFFN(
|
635 |
+
(activate): GELU(approximate='none')
|
636 |
+
(layers): Sequential(
|
637 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
638 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
639 |
+
(2): GELU(approximate='none')
|
640 |
+
(3): Dropout(p=0.0, inplace=False)
|
641 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
642 |
+
(5): Dropout(p=0.0, inplace=False)
|
643 |
+
)
|
644 |
+
(dropout_layer): DropPath()
|
645 |
+
)
|
646 |
+
)
|
647 |
+
(2): TransformerEncoderLayer(
|
648 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
649 |
+
(attn): EfficientMultiheadAttention(
|
650 |
+
(attn): MultiheadAttention(
|
651 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
652 |
+
)
|
653 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
654 |
+
(dropout_layer): DropPath()
|
655 |
+
)
|
656 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
657 |
+
(ffn): MixFFN(
|
658 |
+
(activate): GELU(approximate='none')
|
659 |
+
(layers): Sequential(
|
660 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
661 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
662 |
+
(2): GELU(approximate='none')
|
663 |
+
(3): Dropout(p=0.0, inplace=False)
|
664 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
665 |
+
(5): Dropout(p=0.0, inplace=False)
|
666 |
+
)
|
667 |
+
(dropout_layer): DropPath()
|
668 |
+
)
|
669 |
+
)
|
670 |
+
)
|
671 |
+
(2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
672 |
+
)
|
673 |
+
)
|
674 |
+
)
|
675 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
676 |
+
(decode_head): SegformerHeadUnetFCHeadSingleStep(
|
677 |
+
input_transform=multiple_select, ignore_index=0, align_corners=False
|
678 |
+
(loss_decode): CrossEntropyLoss(avg_non_ignore=False)
|
679 |
+
(conv_seg): None
|
680 |
+
(dropout): Dropout2d(p=0.1, inplace=False)
|
681 |
+
(convs): ModuleList(
|
682 |
+
(0): ConvModule(
|
683 |
+
(conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
684 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
685 |
+
(activate): ReLU(inplace=True)
|
686 |
+
)
|
687 |
+
(1): ConvModule(
|
688 |
+
(conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
689 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
690 |
+
(activate): ReLU(inplace=True)
|
691 |
+
)
|
692 |
+
(2): ConvModule(
|
693 |
+
(conv): Conv2d(320, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
694 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
695 |
+
(activate): ReLU(inplace=True)
|
696 |
+
)
|
697 |
+
(3): ConvModule(
|
698 |
+
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
699 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
700 |
+
(activate): ReLU(inplace=True)
|
701 |
+
)
|
702 |
+
)
|
703 |
+
(fusion_conv): ConvModule(
|
704 |
+
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
705 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
706 |
+
(activate): ReLU(inplace=True)
|
707 |
+
)
|
708 |
+
(unet): Unet(
|
709 |
+
(init_conv): Conv2d(272, 128, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
|
710 |
+
(time_mlp): Sequential(
|
711 |
+
(0): SinusoidalPosEmb()
|
712 |
+
(1): Linear(in_features=128, out_features=512, bias=True)
|
713 |
+
(2): GELU(approximate='none')
|
714 |
+
(3): Linear(in_features=512, out_features=512, bias=True)
|
715 |
+
)
|
716 |
+
(downs): ModuleList(
|
717 |
+
(0): ModuleList(
|
718 |
+
(0): ResnetBlock(
|
719 |
+
(mlp): Sequential(
|
720 |
+
(0): SiLU()
|
721 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
722 |
+
)
|
723 |
+
(block1): Block(
|
724 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
725 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
726 |
+
(act): SiLU()
|
727 |
+
)
|
728 |
+
(block2): Block(
|
729 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
730 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
731 |
+
(act): SiLU()
|
732 |
+
)
|
733 |
+
(res_conv): Identity()
|
734 |
+
)
|
735 |
+
(1): ResnetBlock(
|
736 |
+
(mlp): Sequential(
|
737 |
+
(0): SiLU()
|
738 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
739 |
+
)
|
740 |
+
(block1): Block(
|
741 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
742 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
743 |
+
(act): SiLU()
|
744 |
+
)
|
745 |
+
(block2): Block(
|
746 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
747 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
748 |
+
(act): SiLU()
|
749 |
+
)
|
750 |
+
(res_conv): Identity()
|
751 |
+
)
|
752 |
+
(2): Residual(
|
753 |
+
(fn): PreNorm(
|
754 |
+
(fn): LinearAttention(
|
755 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
756 |
+
(to_out): Sequential(
|
757 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
758 |
+
(1): LayerNorm()
|
759 |
+
)
|
760 |
+
)
|
761 |
+
(norm): LayerNorm()
|
762 |
+
)
|
763 |
+
)
|
764 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
765 |
+
)
|
766 |
+
(1): ModuleList(
|
767 |
+
(0): ResnetBlock(
|
768 |
+
(mlp): Sequential(
|
769 |
+
(0): SiLU()
|
770 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
771 |
+
)
|
772 |
+
(block1): Block(
|
773 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
774 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
775 |
+
(act): SiLU()
|
776 |
+
)
|
777 |
+
(block2): Block(
|
778 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
779 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
780 |
+
(act): SiLU()
|
781 |
+
)
|
782 |
+
(res_conv): Identity()
|
783 |
+
)
|
784 |
+
(1): ResnetBlock(
|
785 |
+
(mlp): Sequential(
|
786 |
+
(0): SiLU()
|
787 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
788 |
+
)
|
789 |
+
(block1): Block(
|
790 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
791 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
792 |
+
(act): SiLU()
|
793 |
+
)
|
794 |
+
(block2): Block(
|
795 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
796 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
797 |
+
(act): SiLU()
|
798 |
+
)
|
799 |
+
(res_conv): Identity()
|
800 |
+
)
|
801 |
+
(2): Residual(
|
802 |
+
(fn): PreNorm(
|
803 |
+
(fn): LinearAttention(
|
804 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
805 |
+
(to_out): Sequential(
|
806 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
807 |
+
(1): LayerNorm()
|
808 |
+
)
|
809 |
+
)
|
810 |
+
(norm): LayerNorm()
|
811 |
+
)
|
812 |
+
)
|
813 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
814 |
+
)
|
815 |
+
(2): ModuleList(
|
816 |
+
(0): ResnetBlock(
|
817 |
+
(mlp): Sequential(
|
818 |
+
(0): SiLU()
|
819 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
820 |
+
)
|
821 |
+
(block1): Block(
|
822 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
823 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
824 |
+
(act): SiLU()
|
825 |
+
)
|
826 |
+
(block2): Block(
|
827 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
828 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
829 |
+
(act): SiLU()
|
830 |
+
)
|
831 |
+
(res_conv): Identity()
|
832 |
+
)
|
833 |
+
(1): ResnetBlock(
|
834 |
+
(mlp): Sequential(
|
835 |
+
(0): SiLU()
|
836 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
837 |
+
)
|
838 |
+
(block1): Block(
|
839 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
840 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
841 |
+
(act): SiLU()
|
842 |
+
)
|
843 |
+
(block2): Block(
|
844 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
845 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
846 |
+
(act): SiLU()
|
847 |
+
)
|
848 |
+
(res_conv): Identity()
|
849 |
+
)
|
850 |
+
(2): Residual(
|
851 |
+
(fn): PreNorm(
|
852 |
+
(fn): LinearAttention(
|
853 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
854 |
+
(to_out): Sequential(
|
855 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
856 |
+
(1): LayerNorm()
|
857 |
+
)
|
858 |
+
)
|
859 |
+
(norm): LayerNorm()
|
860 |
+
)
|
861 |
+
)
|
862 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
863 |
+
)
|
864 |
+
)
|
865 |
+
(ups): ModuleList(
|
866 |
+
(0): ModuleList(
|
867 |
+
(0): ResnetBlock(
|
868 |
+
(mlp): Sequential(
|
869 |
+
(0): SiLU()
|
870 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
871 |
+
)
|
872 |
+
(block1): Block(
|
873 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
874 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
875 |
+
(act): SiLU()
|
876 |
+
)
|
877 |
+
(block2): Block(
|
878 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
879 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
880 |
+
(act): SiLU()
|
881 |
+
)
|
882 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
883 |
+
)
|
884 |
+
(1): ResnetBlock(
|
885 |
+
(mlp): Sequential(
|
886 |
+
(0): SiLU()
|
887 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
888 |
+
)
|
889 |
+
(block1): Block(
|
890 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
891 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
892 |
+
(act): SiLU()
|
893 |
+
)
|
894 |
+
(block2): Block(
|
895 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
896 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
897 |
+
(act): SiLU()
|
898 |
+
)
|
899 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
900 |
+
)
|
901 |
+
(2): Residual(
|
902 |
+
(fn): PreNorm(
|
903 |
+
(fn): LinearAttention(
|
904 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
905 |
+
(to_out): Sequential(
|
906 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
907 |
+
(1): LayerNorm()
|
908 |
+
)
|
909 |
+
)
|
910 |
+
(norm): LayerNorm()
|
911 |
+
)
|
912 |
+
)
|
913 |
+
(3): Sequential(
|
914 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
915 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
916 |
+
)
|
917 |
+
)
|
918 |
+
(1): ModuleList(
|
919 |
+
(0): ResnetBlock(
|
920 |
+
(mlp): Sequential(
|
921 |
+
(0): SiLU()
|
922 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
923 |
+
)
|
924 |
+
(block1): Block(
|
925 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
926 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
927 |
+
(act): SiLU()
|
928 |
+
)
|
929 |
+
(block2): Block(
|
930 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
931 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
932 |
+
(act): SiLU()
|
933 |
+
)
|
934 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
935 |
+
)
|
936 |
+
(1): ResnetBlock(
|
937 |
+
(mlp): Sequential(
|
938 |
+
(0): SiLU()
|
939 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
940 |
+
)
|
941 |
+
(block1): Block(
|
942 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
943 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
944 |
+
(act): SiLU()
|
945 |
+
)
|
946 |
+
(block2): Block(
|
947 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
948 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
949 |
+
(act): SiLU()
|
950 |
+
)
|
951 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
952 |
+
)
|
953 |
+
(2): Residual(
|
954 |
+
(fn): PreNorm(
|
955 |
+
(fn): LinearAttention(
|
956 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
957 |
+
(to_out): Sequential(
|
958 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
959 |
+
(1): LayerNorm()
|
960 |
+
)
|
961 |
+
)
|
962 |
+
(norm): LayerNorm()
|
963 |
+
)
|
964 |
+
)
|
965 |
+
(3): Sequential(
|
966 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
967 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
968 |
+
)
|
969 |
+
)
|
970 |
+
(2): ModuleList(
|
971 |
+
(0): ResnetBlock(
|
972 |
+
(mlp): Sequential(
|
973 |
+
(0): SiLU()
|
974 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
975 |
+
)
|
976 |
+
(block1): Block(
|
977 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
978 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
979 |
+
(act): SiLU()
|
980 |
+
)
|
981 |
+
(block2): Block(
|
982 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
983 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
984 |
+
(act): SiLU()
|
985 |
+
)
|
986 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
987 |
+
)
|
988 |
+
(1): ResnetBlock(
|
989 |
+
(mlp): Sequential(
|
990 |
+
(0): SiLU()
|
991 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
992 |
+
)
|
993 |
+
(block1): Block(
|
994 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
995 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
996 |
+
(act): SiLU()
|
997 |
+
)
|
998 |
+
(block2): Block(
|
999 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1000 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1001 |
+
(act): SiLU()
|
1002 |
+
)
|
1003 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1004 |
+
)
|
1005 |
+
(2): Residual(
|
1006 |
+
(fn): PreNorm(
|
1007 |
+
(fn): LinearAttention(
|
1008 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1009 |
+
(to_out): Sequential(
|
1010 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1011 |
+
(1): LayerNorm()
|
1012 |
+
)
|
1013 |
+
)
|
1014 |
+
(norm): LayerNorm()
|
1015 |
+
)
|
1016 |
+
)
|
1017 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1018 |
+
)
|
1019 |
+
)
|
1020 |
+
(mid_block1): ResnetBlock(
|
1021 |
+
(mlp): Sequential(
|
1022 |
+
(0): SiLU()
|
1023 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1024 |
+
)
|
1025 |
+
(block1): Block(
|
1026 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1027 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1028 |
+
(act): SiLU()
|
1029 |
+
)
|
1030 |
+
(block2): Block(
|
1031 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1032 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1033 |
+
(act): SiLU()
|
1034 |
+
)
|
1035 |
+
(res_conv): Identity()
|
1036 |
+
)
|
1037 |
+
(mid_attn): Residual(
|
1038 |
+
(fn): PreNorm(
|
1039 |
+
(fn): Attention(
|
1040 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1041 |
+
(to_out): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1042 |
+
)
|
1043 |
+
(norm): LayerNorm()
|
1044 |
+
)
|
1045 |
+
)
|
1046 |
+
(mid_block2): ResnetBlock(
|
1047 |
+
(mlp): Sequential(
|
1048 |
+
(0): SiLU()
|
1049 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1050 |
+
)
|
1051 |
+
(block1): Block(
|
1052 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1053 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1054 |
+
(act): SiLU()
|
1055 |
+
)
|
1056 |
+
(block2): Block(
|
1057 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1058 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1059 |
+
(act): SiLU()
|
1060 |
+
)
|
1061 |
+
(res_conv): Identity()
|
1062 |
+
)
|
1063 |
+
(final_res_block): ResnetBlock(
|
1064 |
+
(mlp): Sequential(
|
1065 |
+
(0): SiLU()
|
1066 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1067 |
+
)
|
1068 |
+
(block1): Block(
|
1069 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1070 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1071 |
+
(act): SiLU()
|
1072 |
+
)
|
1073 |
+
(block2): Block(
|
1074 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1075 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1076 |
+
(act): SiLU()
|
1077 |
+
)
|
1078 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1079 |
+
)
|
1080 |
+
(final_conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
1081 |
+
)
|
1082 |
+
(conv_seg_new): Conv2d(256, 151, kernel_size=(1, 1), stride=(1, 1))
|
1083 |
+
(embed): Embedding(151, 16)
|
1084 |
+
)
|
1085 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
1086 |
+
)
|
1087 |
+
2023-03-03 13:59:40,184 - mmseg - INFO - Loaded 20210 images
|
1088 |
+
2023-03-03 13:59:41,189 - mmseg - INFO - Loaded 2000 images
|
1089 |
+
2023-03-03 13:59:41,192 - mmseg - INFO - Start running, host: laizeqiang@SH-IDC1-10-140-37-124, work_dir: /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151
|
1090 |
+
2023-03-03 13:59:41,192 - mmseg - INFO - Hooks will be executed in the following order:
|
1091 |
+
before_run:
|
1092 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1093 |
+
(NORMAL ) CheckpointHook
|
1094 |
+
(LOW ) DistEvalHook
|
1095 |
+
(VERY_LOW ) TextLoggerHook
|
1096 |
+
--------------------
|
1097 |
+
before_train_epoch:
|
1098 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1099 |
+
(LOW ) IterTimerHook
|
1100 |
+
(LOW ) DistEvalHook
|
1101 |
+
(VERY_LOW ) TextLoggerHook
|
1102 |
+
--------------------
|
1103 |
+
before_train_iter:
|
1104 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1105 |
+
(LOW ) IterTimerHook
|
1106 |
+
(LOW ) DistEvalHook
|
1107 |
+
--------------------
|
1108 |
+
after_train_iter:
|
1109 |
+
(ABOVE_NORMAL) OptimizerHook
|
1110 |
+
(NORMAL ) CheckpointHook
|
1111 |
+
(LOW ) IterTimerHook
|
1112 |
+
(LOW ) DistEvalHook
|
1113 |
+
(VERY_LOW ) TextLoggerHook
|
1114 |
+
--------------------
|
1115 |
+
after_train_epoch:
|
1116 |
+
(NORMAL ) CheckpointHook
|
1117 |
+
(LOW ) DistEvalHook
|
1118 |
+
(VERY_LOW ) TextLoggerHook
|
1119 |
+
--------------------
|
1120 |
+
before_val_epoch:
|
1121 |
+
(LOW ) IterTimerHook
|
1122 |
+
(VERY_LOW ) TextLoggerHook
|
1123 |
+
--------------------
|
1124 |
+
before_val_iter:
|
1125 |
+
(LOW ) IterTimerHook
|
1126 |
+
--------------------
|
1127 |
+
after_val_iter:
|
1128 |
+
(LOW ) IterTimerHook
|
1129 |
+
--------------------
|
1130 |
+
after_val_epoch:
|
1131 |
+
(VERY_LOW ) TextLoggerHook
|
1132 |
+
--------------------
|
1133 |
+
after_run:
|
1134 |
+
(VERY_LOW ) TextLoggerHook
|
1135 |
+
--------------------
|
1136 |
+
2023-03-03 13:59:41,192 - mmseg - INFO - workflow: [('train', 1)], max: 80000 iters
|
1137 |
+
2023-03-03 13:59:41,192 - mmseg - INFO - Checkpoints will be saved to /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151 by HardDiskBackend.
|
segformer_b2_singlestep/20230303_135933.log.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+ad87029", "seed": 97773280, "exp_name": "segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py", "mmseg_version": "0.30.0+ad87029", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\nmodel = dict(\n type='EncoderDecoderFreeze',\n freeze_parameters=['backbone', 'decode_head'],\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n backbone=dict(\n type='MixVisionTransformerCustomInitWeights',\n in_channels=3,\n embed_dims=64,\n num_stages=4,\n num_layers=[3, 4, 6, 3],\n num_heads=[1, 2, 5, 8],\n patch_sizes=[7, 3, 3, 3],\n sr_ratios=[8, 4, 2, 1],\n out_indices=(0, 1, 2, 3),\n mlp_ratio=4,\n qkv_bias=True,\n drop_rate=0.0,\n attn_drop_rate=0.0,\n drop_path_rate=0.1,\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\n ),\n decode_head=dict(\n type='SegformerHeadUnetFCHeadSingleStep',\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n dim=128,\n out_dim=256,\n unet_channels=272,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n in_channels=[64, 128, 320, 512],\n in_index=[0, 1, 2, 3],\n channels=256,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n ignore_index=0,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n train_cfg=dict(),\n test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\nwork_dir = './work_dirs/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 97773280\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
segformer_b2_singlestep/iter_80000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ddd1dbf72f0bea45926f79ba05c54ab5133fcaf69080d0b2936ce54329c82a1
|
3 |
+
size 1995368606
|
segformer_b2_singlestep/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
checkpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoderFreeze',
|
5 |
+
freeze_parameters=['backbone', 'decode_head'],
|
6 |
+
pretrained=
|
7 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
8 |
+
backbone=dict(
|
9 |
+
type='MixVisionTransformerCustomInitWeights',
|
10 |
+
in_channels=3,
|
11 |
+
embed_dims=64,
|
12 |
+
num_stages=4,
|
13 |
+
num_layers=[3, 4, 6, 3],
|
14 |
+
num_heads=[1, 2, 5, 8],
|
15 |
+
patch_sizes=[7, 3, 3, 3],
|
16 |
+
sr_ratios=[8, 4, 2, 1],
|
17 |
+
out_indices=(0, 1, 2, 3),
|
18 |
+
mlp_ratio=4,
|
19 |
+
qkv_bias=True,
|
20 |
+
drop_rate=0.0,
|
21 |
+
attn_drop_rate=0.0,
|
22 |
+
drop_path_rate=0.1),
|
23 |
+
decode_head=dict(
|
24 |
+
type='SegformerHeadUnetFCHeadSingleStep',
|
25 |
+
pretrained=
|
26 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
27 |
+
dim=128,
|
28 |
+
out_dim=256,
|
29 |
+
unet_channels=272,
|
30 |
+
dim_mults=[1, 1, 1],
|
31 |
+
cat_embedding_dim=16,
|
32 |
+
in_channels=[64, 128, 320, 512],
|
33 |
+
in_index=[0, 1, 2, 3],
|
34 |
+
channels=256,
|
35 |
+
dropout_ratio=0.1,
|
36 |
+
num_classes=151,
|
37 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
38 |
+
align_corners=False,
|
39 |
+
ignore_index=0,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
42 |
+
train_cfg=dict(),
|
43 |
+
test_cfg=dict(mode='whole'))
|
44 |
+
dataset_type = 'ADE20K151Dataset'
|
45 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
46 |
+
img_norm_cfg = dict(
|
47 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
48 |
+
crop_size = (512, 512)
|
49 |
+
train_pipeline = [
|
50 |
+
dict(type='LoadImageFromFile'),
|
51 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
52 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
53 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
54 |
+
dict(type='RandomFlip', prob=0.5),
|
55 |
+
dict(type='PhotoMetricDistortion'),
|
56 |
+
dict(
|
57 |
+
type='Normalize',
|
58 |
+
mean=[123.675, 116.28, 103.53],
|
59 |
+
std=[58.395, 57.12, 57.375],
|
60 |
+
to_rgb=True),
|
61 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
62 |
+
dict(type='DefaultFormatBundle'),
|
63 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
64 |
+
]
|
65 |
+
test_pipeline = [
|
66 |
+
dict(type='LoadImageFromFile'),
|
67 |
+
dict(
|
68 |
+
type='MultiScaleFlipAug',
|
69 |
+
img_scale=(2048, 512),
|
70 |
+
flip=False,
|
71 |
+
transforms=[
|
72 |
+
dict(type='Resize', keep_ratio=True),
|
73 |
+
dict(type='RandomFlip'),
|
74 |
+
dict(
|
75 |
+
type='Normalize',
|
76 |
+
mean=[123.675, 116.28, 103.53],
|
77 |
+
std=[58.395, 57.12, 57.375],
|
78 |
+
to_rgb=True),
|
79 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
80 |
+
dict(type='ImageToTensor', keys=['img']),
|
81 |
+
dict(type='Collect', keys=['img'])
|
82 |
+
])
|
83 |
+
]
|
84 |
+
data = dict(
|
85 |
+
samples_per_gpu=4,
|
86 |
+
workers_per_gpu=4,
|
87 |
+
train=dict(
|
88 |
+
type='ADE20K151Dataset',
|
89 |
+
data_root='data/ade/ADEChallengeData2016',
|
90 |
+
img_dir='images/training',
|
91 |
+
ann_dir='annotations/training',
|
92 |
+
pipeline=[
|
93 |
+
dict(type='LoadImageFromFile'),
|
94 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
95 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
96 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
97 |
+
dict(type='RandomFlip', prob=0.5),
|
98 |
+
dict(type='PhotoMetricDistortion'),
|
99 |
+
dict(
|
100 |
+
type='Normalize',
|
101 |
+
mean=[123.675, 116.28, 103.53],
|
102 |
+
std=[58.395, 57.12, 57.375],
|
103 |
+
to_rgb=True),
|
104 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
105 |
+
dict(type='DefaultFormatBundle'),
|
106 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
107 |
+
]),
|
108 |
+
val=dict(
|
109 |
+
type='ADE20K151Dataset',
|
110 |
+
data_root='data/ade/ADEChallengeData2016',
|
111 |
+
img_dir='images/validation',
|
112 |
+
ann_dir='annotations/validation',
|
113 |
+
pipeline=[
|
114 |
+
dict(type='LoadImageFromFile'),
|
115 |
+
dict(
|
116 |
+
type='MultiScaleFlipAug',
|
117 |
+
img_scale=(2048, 512),
|
118 |
+
flip=False,
|
119 |
+
transforms=[
|
120 |
+
dict(type='Resize', keep_ratio=True),
|
121 |
+
dict(type='RandomFlip'),
|
122 |
+
dict(
|
123 |
+
type='Normalize',
|
124 |
+
mean=[123.675, 116.28, 103.53],
|
125 |
+
std=[58.395, 57.12, 57.375],
|
126 |
+
to_rgb=True),
|
127 |
+
dict(
|
128 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
129 |
+
dict(type='ImageToTensor', keys=['img']),
|
130 |
+
dict(type='Collect', keys=['img'])
|
131 |
+
])
|
132 |
+
]),
|
133 |
+
test=dict(
|
134 |
+
type='ADE20K151Dataset',
|
135 |
+
data_root='data/ade/ADEChallengeData2016',
|
136 |
+
img_dir='images/validation',
|
137 |
+
ann_dir='annotations/validation',
|
138 |
+
pipeline=[
|
139 |
+
dict(type='LoadImageFromFile'),
|
140 |
+
dict(
|
141 |
+
type='MultiScaleFlipAug',
|
142 |
+
img_scale=(2048, 512),
|
143 |
+
flip=False,
|
144 |
+
transforms=[
|
145 |
+
dict(type='Resize', keep_ratio=True),
|
146 |
+
dict(type='RandomFlip'),
|
147 |
+
dict(
|
148 |
+
type='Normalize',
|
149 |
+
mean=[123.675, 116.28, 103.53],
|
150 |
+
std=[58.395, 57.12, 57.375],
|
151 |
+
to_rgb=True),
|
152 |
+
dict(
|
153 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
154 |
+
dict(type='ImageToTensor', keys=['img']),
|
155 |
+
dict(type='Collect', keys=['img'])
|
156 |
+
])
|
157 |
+
]))
|
158 |
+
log_config = dict(
|
159 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
160 |
+
dist_params = dict(backend='nccl')
|
161 |
+
log_level = 'INFO'
|
162 |
+
load_from = None
|
163 |
+
resume_from = None
|
164 |
+
workflow = [('train', 1)]
|
165 |
+
cudnn_benchmark = True
|
166 |
+
optimizer = dict(
|
167 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
168 |
+
optimizer_config = dict()
|
169 |
+
lr_config = dict(
|
170 |
+
policy='step',
|
171 |
+
warmup='linear',
|
172 |
+
warmup_iters=1000,
|
173 |
+
warmup_ratio=1e-06,
|
174 |
+
step=10000,
|
175 |
+
gamma=0.5,
|
176 |
+
min_lr=1e-06,
|
177 |
+
by_epoch=False)
|
178 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
179 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
180 |
+
evaluation = dict(
|
181 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
182 |
+
work_dir = './work_dirs/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151'
|
183 |
+
gpu_ids = range(0, 8)
|
184 |
+
auto_resume = True
|