aaronayitey's picture
aaronayitey/Sentiment-classfication-distilBERT-model
027932f
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: Sentiment-classfication-distilBERT-model
    results: []

Sentiment-classfication-distilBERT-model

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3217
  • Accuracy: 0.9301

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.11 0.14 100 1.0458 0.4603
0.9647 0.27 200 0.9241 0.5743
0.8498 0.41 300 0.7957 0.6365
0.7436 0.54 400 0.7044 0.7043
0.683 0.68 500 0.7109 0.7040
0.6407 0.81 600 0.5602 0.7872
0.5388 0.95 700 0.5073 0.8031
0.449 1.09 800 0.4736 0.8316
0.4136 1.22 900 0.5387 0.8147
0.3329 1.36 1000 0.4277 0.8615
0.3405 1.49 1100 0.3667 0.8730
0.2806 1.63 1200 0.3420 0.8832
0.2648 1.77 1300 0.3437 0.8975
0.2912 1.9 1400 0.3503 0.8914
0.2109 2.04 1500 0.3268 0.9182
0.1267 2.17 1600 0.3676 0.9182
0.0931 2.31 1700 0.3635 0.9250
0.1447 2.44 1800 0.3144 0.9233
0.0979 2.58 1900 0.3197 0.9301
0.1156 2.72 2000 0.3217 0.9301
0.0922 2.85 2100 0.3323 0.9294
0.1094 2.99 2200 0.2976 0.9304
0.0667 3.12 2300 0.3554 0.9318
0.0479 3.26 2400 0.3648 0.9318
0.0427 3.39 2500 0.3615 0.9331
0.0499 3.53 2600 0.3251 0.9389
0.0381 3.67 2700 0.3391 0.9362
0.0498 3.8 2800 0.3350 0.9365
0.0565 3.94 2900 0.3331 0.9375

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1