Commit
·
94bfe18
1
Parent(s):
046176d
update model card README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
-
- image-classification
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
@@ -15,10 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# vit-base-clothing-leafs-example-full-simple
|
17 |
|
18 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss:
|
21 |
-
- Accuracy: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -37,40 +36,47 @@ More information needed
|
|
37 |
### Training hyperparameters
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
-
- learning_rate:
|
41 |
- train_batch_size: 32
|
42 |
- eval_batch_size: 8
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
-
- num_epochs:
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
-
| 1.
|
54 |
-
| 1.
|
55 |
-
| 1.
|
56 |
-
| 1.
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
|
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
tags:
|
|
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
6 |
- accuracy
|
|
|
14 |
|
15 |
# vit-base-clothing-leafs-example-full-simple
|
16 |
|
17 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0260
|
20 |
+
- Accuracy: 0.7112
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
- train_batch_size: 32
|
41 |
- eval_batch_size: 8
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 4
|
46 |
- mixed_precision_training: Native AMP
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
52 |
+
| 1.7384 | 0.14 | 1000 | 1.3281 | 0.6473 |
|
53 |
+
| 1.2367 | 0.28 | 2000 | 1.1815 | 0.6703 |
|
54 |
+
| 1.1348 | 0.41 | 3000 | 1.1290 | 0.6794 |
|
55 |
+
| 1.1003 | 0.55 | 4000 | 1.0927 | 0.6883 |
|
56 |
+
| 1.0695 | 0.69 | 5000 | 1.0641 | 0.6911 |
|
57 |
+
| 1.0426 | 0.83 | 6000 | 1.0410 | 0.6958 |
|
58 |
+
| 1.0247 | 0.97 | 7000 | 1.0402 | 0.6937 |
|
59 |
+
| 0.9406 | 1.11 | 8000 | 1.0244 | 0.7004 |
|
60 |
+
| 0.8824 | 1.24 | 9000 | 1.0365 | 0.6993 |
|
61 |
+
| 0.8979 | 1.38 | 10000 | 1.0051 | 0.7067 |
|
62 |
+
| 0.8947 | 1.52 | 11000 | 0.9986 | 0.7089 |
|
63 |
+
| 0.8785 | 1.66 | 12000 | 0.9866 | 0.7118 |
|
64 |
+
| 0.8881 | 1.8 | 13000 | 0.9892 | 0.7112 |
|
65 |
+
| 0.8652 | 1.94 | 14000 | 0.9875 | 0.7112 |
|
66 |
+
| 0.7969 | 2.07 | 15000 | 1.0030 | 0.7083 |
|
67 |
+
| 0.7153 | 2.21 | 16000 | 1.0069 | 0.7085 |
|
68 |
+
| 0.7158 | 2.35 | 17000 | 1.0076 | 0.7080 |
|
69 |
+
| 0.7248 | 2.49 | 18000 | 1.0020 | 0.7108 |
|
70 |
+
| 0.7204 | 2.63 | 19000 | 0.9929 | 0.7131 |
|
71 |
+
| 0.7127 | 2.77 | 20000 | 0.9929 | 0.7139 |
|
72 |
+
| 0.7274 | 2.9 | 21000 | 0.9929 | 0.7105 |
|
73 |
+
| 0.6769 | 3.04 | 22000 | 1.0152 | 0.7118 |
|
74 |
+
| 0.5859 | 3.18 | 23000 | 1.0314 | 0.7089 |
|
75 |
+
| 0.5811 | 3.32 | 24000 | 1.0340 | 0.7106 |
|
76 |
+
| 0.5863 | 3.46 | 25000 | 1.0253 | 0.7105 |
|
77 |
+
| 0.5656 | 3.6 | 26000 | 1.0279 | 0.7104 |
|
78 |
+
| 0.5753 | 3.73 | 27000 | 1.0284 | 0.7108 |
|
79 |
+
| 0.5681 | 3.87 | 28000 | 1.0260 | 0.7112 |
|
80 |
|
81 |
|
82 |
### Framework versions
|