aabayomi's picture
ppo trained agent version-2
18d83e6
raw
history blame
14.6 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff7f22c8820>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff7f22c88b0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff7f22c8940>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff7f22c89d0>",
"_build": "<function ActorCriticPolicy._build at 0x7ff7f22c8a60>",
"forward": "<function ActorCriticPolicy.forward at 0x7ff7f22c8af0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff7f22c8b80>",
"_predict": "<function ActorCriticPolicy._predict at 0x7ff7f22c8c10>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff7f22c8ca0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff7f22c8d30>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff7f22c8dc0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7ff7f22c1ea0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1670900003683330162,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC6ajyYIKY+sK0yuzws475ytzS8vlJEPAAAAAAAAAAAzWBSPK69m7pT4Ha90pk/MSFmBrpMFoyyAACAPwAAgD8T1Rc+ONlPP87Xrj3Odh+/yNFKPvqFGL0AAAAAAAAAAJpJrTr4hKg/7rnnPNSq7L7SYZ487hx6vQAAAAAAAAAANbKavrO6Pj9GnrW90QsRv5EzE79EJcQ9AAAAAAAAAAAArj+8e66Fuuf1GbwjMow1NriLOlgF/bQAAAAAAAAAAADiGr6rWSM/JdhDPep8HL+1HW6+kInNPQAAAAAAAAAAxmAnPiGFNz5q0nS+/zlSvpEFkjv8bwI8AAAAAAAAAACzNYc99mgWuhijlTjPuJS0Vul9u9UerbcAAAAAAAAAAGoHjD5rgFo/kkNePsPY/L4VxKo+FKcovQAAAAAAAAAAzdirPU9tH7zrTqO7TVqZPOXrg72ihX09AACAPwAAAACzSRy9wiBbP9C3gLv+zDC/ISnGvQBn2j0AAAAAAAAAAHOnqb2PPm66jD0CPJs6jTwxn666WkB1PQAAgD8AAIA/ZtXGPJfMDzzhqrk99ImYvpwIwT32arK8AAAAAAAAgD8NEwA+qA9eP6AaJz6xiAy/UmYZPs6hxT0AAAAAAAAAAEBl5r3rYaI9TpZPPsuwzr6ooj49i0bpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEK/rFyzncUCUhpRSlIwBbJRLsIwBdJRHQLbW86unuRd1fZQoaAZoCWgPQwgSvCGNSrRyQJSGlFKUaBVLzWgWR0C21v90FKTTdX2UKGgGaAloD0MI1SZO7rdHc0CUhpRSlGgVS7hoFkdAttcL2pQ1rXV9lChoBmgJaA9DCD0oKEXrq3FAlIaUUpRoFUvuaBZHQLbXEXo1UER1fZQoaAZoCWgPQwiWzLG8q3VyQJSGlFKUaBVL/mgWR0C21yLxy4nXdX2UKGgGaAloD0MIJSTSNn7Rb0CUhpRSlGgVS8NoFkdAttcx3mmtQ3V9lChoBmgJaA9DCDW3QljNR3FAlIaUUpRoFUvaaBZHQLbXPXIEKVp1fZQoaAZoCWgPQwjX2ZB/5p1zQJSGlFKUaBVL6mgWR0C213PMbFS9dX2UKGgGaAloD0MILPTBMrbCb0CUhpRSlGgVS7doFkdAttd58v24/nV9lChoBmgJaA9DCFlRg2kYmHFAlIaUUpRoFUvjaBZHQLbXllzU7S11fZQoaAZoCWgPQwgnhXmPc0NyQJSGlFKUaBVL3WgWR0C2193s5XEJdX2UKGgGaAloD0MIoYUEjG7ucECUhpRSlGgVS8BoFkdAttfsFr2xp3V9lChoBmgJaA9DCFWgFoOHvXFAlIaUUpRoFUviaBZHQLbX/D15B1N1fZQoaAZoCWgPQwh3D9B9uUFyQJSGlFKUaBVLxWgWR0C22AJ0wJw9dX2UKGgGaAloD0MIjuczoN6sb0CUhpRSlGgVS8JoFkdAttgKLcbiqHV9lChoBmgJaA9DCDkroiZ6dHFAlIaUUpRoFUvYaBZHQLbYDpw0fo11fZQoaAZoCWgPQwgtsTIaOQ5zQJSGlFKUaBVL7GgWR0C22CRGc4HYdX2UKGgGaAloD0MIwmwCDAvYc0CUhpRSlGgVS9JoFkdAttg5uqFRHnV9lChoBmgJaA9DCCYBamrZaXFAlIaUUpRoFUvjaBZHQLbYVxnnMdN1fZQoaAZoCWgPQwjDZoALcjhzQJSGlFKUaBVL4GgWR0C22GYoy9EkdX2UKGgGaAloD0MInuv7cNCdc0CUhpRSlGgVTQMBaBZHQLbYcsGPgel1fZQoaAZoCWgPQwgR/dr6KV5xQJSGlFKUaBVL4WgWR0C22HetCAtndX2UKGgGaAloD0MIqIqp9JN/b0CUhpRSlGgVS81oFkdAttil0NjLCHV9lChoBmgJaA9DCA2LUddaC3NAlIaUUpRoFU0CAWgWR0C22LMe8wpOdX2UKGgGaAloD0MIDf0TXGxdc0CUhpRSlGgVS9toFkdAtti2hakhzXV9lChoBmgJaA9DCJvKorBLnXFAlIaUUpRoFUuuaBZHQLbzixXGOuJ1fZQoaAZoCWgPQwi31awzPvNuQJSGlFKUaBVLvGgWR0C285HvUjLTdX2UKGgGaAloD0MIg4k/irpJckCUhpRSlGgVTQIBaBZHQLbzqTy8SPF1fZQoaAZoCWgPQwi2Lcps0N5xQJSGlFKUaBVLyGgWR0C288cMqjJudX2UKGgGaAloD0MIBTHQtW+xcECUhpRSlGgVS9doFkdAtvPR2+wkgXV9lChoBmgJaA9DCBA9KZOaNm9AlIaUUpRoFUvtaBZHQLbz0UaQ3gl1fZQoaAZoCWgPQwjS4oxhzvtyQJSGlFKUaBVL12gWR0C29Apq7AcldX2UKGgGaAloD0MIy9k7o+3mcECUhpRSlGgVS/5oFkdAtvQShAWznnV9lChoBmgJaA9DCI2bGmh+IHJAlIaUUpRoFU0BAWgWR0C29DHavicYdX2UKGgGaAloD0MI6Zyf4jjBcECUhpRSlGgVS81oFkdAtvQ3WxyGSXV9lChoBmgJaA9DCEtWRbgJknNAlIaUUpRoFUvvaBZHQLb0Tu14Pf91fZQoaAZoCWgPQwjwxKwXQ4VyQJSGlFKUaBVL3GgWR0C29FPdl/YrdX2UKGgGaAloD0MI9Wc/UkT8cUCUhpRSlGgVS/JoFkdAtvRhbbDdg3V9lChoBmgJaA9DCAVPIVdq73JAlIaUUpRoFUvQaBZHQLb0cIXj2jB1fZQoaAZoCWgPQwiVRPZBlntyQJSGlFKUaBVL02gWR0C29IM5sCT2dX2UKGgGaAloD0MI2QbuQJ0pc0CUhpRSlGgVS/5oFkdAtvS+H58BuHV9lChoBmgJaA9DCD4hO28jlnJAlIaUUpRoFUu5aBZHQLb03wS8J2N1fZQoaAZoCWgPQwg/ARQjSy5zQJSGlFKUaBVL6WgWR0C29OuhbnoxdX2UKGgGaAloD0MIdHlzuNapbkCUhpRSlGgVS9xoFkdAtvTtlDneSHV9lChoBmgJaA9DCE+w/zq3FHJAlIaUUpRoFUvvaBZHQLb07xWT5ft1fZQoaAZoCWgPQwh4swbvK5VxQJSGlFKUaBVLzGgWR0C29P0b961LdX2UKGgGaAloD0MIP8iyYGKjc0CUhpRSlGgVS99oFkdAtvUNGDtgKHV9lChoBmgJaA9DCMSUSKIX8nFAlIaUUpRoFUvaaBZHQLb1RjdpItl1fZQoaAZoCWgPQwhIGAYs+cRwQJSGlFKUaBVLqWgWR0C29VbIT4+KdX2UKGgGaAloD0MIVwkWh/NScUCUhpRSlGgVS9FoFkdAtvViorFwUHV9lChoBmgJaA9DCIXq5uLvdXFAlIaUUpRoFUvvaBZHQLb1cDgZTAF1fZQoaAZoCWgPQwiWd9UDpotxQJSGlFKUaBVL72gWR0C29ZUIToMbdX2UKGgGaAloD0MIaeTziqehcUCUhpRSlGgVS+loFkdAtvWiZVn27HV9lChoBmgJaA9DCMwk6gUfPnJAlIaUUpRoFUvNaBZHQLb1se18b711fZQoaAZoCWgPQwghsHJoUSdyQJSGlFKUaBVL9GgWR0C29beTibUgdX2UKGgGaAloD0MIr9FyoMeJcUCUhpRSlGgVS+FoFkdAtvW6jIq9XnV9lChoBmgJaA9DCHVVoBbDjnBAlIaUUpRoFUuxaBZHQLb17tozvZ11fZQoaAZoCWgPQwhUi4hisoJxQJSGlFKUaBVL2mgWR0C29f4fOlfrdX2UKGgGaAloD0MI647FNqlocUCUhpRSlGgVS8hoFkdAtvYObBoEjnV9lChoBmgJaA9DCNP58CwBhHJAlIaUUpRoFUvIaBZHQLb2EGW2PT51fZQoaAZoCWgPQwjc1avIKGdwQJSGlFKUaBVL62gWR0C29jgMYuTSdX2UKGgGaAloD0MIaEKTxBJccECUhpRSlGgVS8BoFkdAtvZo5jpcHHV9lChoBmgJaA9DCAIuyJYlHnBAlIaUUpRoFUv8aBZHQLb2dGY8dPt1fZQoaAZoCWgPQwhS8X9HFNxyQJSGlFKUaBVL02gWR0C29pYPwuuidX2UKGgGaAloD0MIIjZYOIk5cUCUhpRSlGgVS6RoFkdAtvat+5OJtXV9lChoBmgJaA9DCFzLZDheJnNAlIaUUpRoFUuzaBZHQLb2tdld1Md1fZQoaAZoCWgPQwhntFVJJHtxQJSGlFKUaBVL4GgWR0C29rmj4593dX2UKGgGaAloD0MI+BvtuCGtckCUhpRSlGgVS+JoFkdAtvbKDh99dHV9lChoBmgJaA9DCKhTHt3IiXFAlIaUUpRoFU0nAWgWR0C29s13hXKbdX2UKGgGaAloD0MIe6AVGPINcUCUhpRSlGgVS7loFkdAtvbXTQVsUXV9lChoBmgJaA9DCD2dK0oJtXJAlIaUUpRoFUu1aBZHQLb3BQyRB/t1fZQoaAZoCWgPQwiHpuz0A2NxQJSGlFKUaBVL5WgWR0C29xEPlMh6dX2UKGgGaAloD0MIjSWsjTFSckCUhpRSlGgVS81oFkdAtvc3Trmhd3V9lChoBmgJaA9DCMmRzsCIfXFAlIaUUpRoFUvFaBZHQLb3PT0xubZ1fZQoaAZoCWgPQwgm5IOejbxwQJSGlFKUaBVLz2gWR0C293kdmxt6dX2UKGgGaAloD0MIbm5MT5gncUCUhpRSlGgVS7NoFkdAtvd7pY9xInV9lChoBmgJaA9DCGqJldEIGHFAlIaUUpRoFUuuaBZHQLb3fvWpZOl1fZQoaAZoCWgPQwh6Nqs+V9RxQJSGlFKUaBVL8WgWR0C294N/8VHndX2UKGgGaAloD0MIHottUtGnc0CUhpRSlGgVTWoBaBZHQLb3uRgJC0F1fZQoaAZoCWgPQwgeFf93BJxzQJSGlFKUaBVLx2gWR0C299awhW5pdX2UKGgGaAloD0MIxw+VRozocUCUhpRSlGgVS8JoFkdAtvfZoFmnO3V9lChoBmgJaA9DCK2FWWin2nJAlIaUUpRoFUvZaBZHQLb33Mi8nNR1fZQoaAZoCWgPQwjRWtHm+BtxQJSGlFKUaBVL12gWR0C29/N+XqqwdX2UKGgGaAloD0MId/NUh1whcUCUhpRSlGgVS9toFkdAtvgKx5cC5nV9lChoBmgJaA9DCHC1TlwO0XJAlIaUUpRoFUvcaBZHQLb4Dujh1kl1fZQoaAZoCWgPQwjy7zMuHFFzQJSGlFKUaBVL1WgWR0C2+A9QXQ+mdX2UKGgGaAloD0MI7WRwlDxBckCUhpRSlGgVS89oFkdAtvgzldTo+3V9lChoBmgJaA9DCEz+J383fXJAlIaUUpRoFUvLaBZHQLb4Oc3EQ5F1fZQoaAZoCWgPQwhdiUD1TyRwQJSGlFKUaBVLymgWR0C2+GUKE385dX2UKGgGaAloD0MI7rWg90Z4b0CUhpRSlGgVS8FoFkdAtviXFo+OfnV9lChoBmgJaA9DCPdbO1ESHHNAlIaUUpRoFUvSaBZHQLb4p6EJ0GN1fZQoaAZoCWgPQwhAw5s1eA5zQJSGlFKUaBVNBQFoFkdAtvi4WqLjxXV9lChoBmgJaA9DCNpVSPmJsHFAlIaUUpRoFUu5aBZHQLb4w4QBgeB1fZQoaAZoCWgPQwi3mnXG9yFvQJSGlFKUaBVL0mgWR0C2+Qqr3j+8dX2UKGgGaAloD0MIFkz8UVQpbkCUhpRSlGgVS65oFkdAtvkNUKiPAHV9lChoBmgJaA9DCJdw6C1eYXJAlIaUUpRoFU0TAWgWR0C2+RInv2GqdX2UKGgGaAloD0MIZJKRs3AscUCUhpRSlGgVS9NoFkdAtvkS+lCTlnV9lChoBmgJaA9DCHhgAOHD/3BAlIaUUpRoFUvaaBZHQLb5Ghhpg1F1fZQoaAZoCWgPQwjkvP+PE5lyQJSGlFKUaBVLymgWR0C2+R4LCvX9dX2UKGgGaAloD0MIDmjpCnaAcUCUhpRSlGgVS9loFkdAtvlP7ALy+nVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 620,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 32,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}