aaa12963337 commited on
Commit
e8b5b67
1 Parent(s): dd44977

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -21
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: mit
3
- base_model: shi-labs/nat-small-in1k-224
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.6625388813897529
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # msi
32
 
33
- This model is a fine-tuned version of [shi-labs/nat-small-in1k-224](https://huggingface.co/shi-labs/nat-small-in1k-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.6797
36
- - Accuracy: 0.6625
37
 
38
  ## Model description
39
 
@@ -52,7 +52,7 @@ More information needed
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
- - learning_rate: 1e-05
56
  - train_batch_size: 16
57
  - eval_batch_size: 16
58
  - seed: 42
@@ -61,27 +61,20 @@ The following hyperparameters were used during training:
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
- - num_epochs: 10
65
 
66
  ### Training results
67
 
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|
70
- | 0.4035 | 1.0 | 1858 | 0.7665 | 0.6671 |
71
- | 0.2976 | 2.0 | 3717 | 1.0836 | 0.6372 |
72
- | 0.2552 | 3.0 | 5575 | 1.1942 | 0.6377 |
73
- | 0.219 | 4.0 | 7434 | 1.3987 | 0.6419 |
74
- | 0.1863 | 5.0 | 9292 | 1.5862 | 0.6248 |
75
- | 0.1946 | 6.0 | 11151 | 1.4975 | 0.6848 |
76
- | 0.1679 | 7.0 | 13009 | 1.6209 | 0.6518 |
77
- | 0.1531 | 8.0 | 14868 | 1.6400 | 0.6599 |
78
- | 0.15 | 9.0 | 16726 | 1.6733 | 0.6702 |
79
- | 0.1377 | 10.0 | 18580 | 1.6797 | 0.6625 |
80
 
81
 
82
  ### Framework versions
83
 
84
- - Transformers 4.35.2
85
- - Pytorch 2.0.1+cu118
86
  - Datasets 2.15.0
87
  - Tokenizers 0.15.0
 
1
  ---
2
  license: mit
3
+ base_model: shi-labs/nat-mini-in1k-224
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.6347497903270898
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
 
31
  # msi
32
 
33
+ This model is a fine-tuned version of [shi-labs/nat-mini-in1k-224](https://huggingface.co/shi-labs/nat-mini-in1k-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.4313
36
+ - Accuracy: 0.6347
37
 
38
  ## Model description
39
 
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
  - train_batch_size: 16
57
  - eval_batch_size: 16
58
  - seed: 42
 
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 3
65
 
66
  ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.2585 | 1.0 | 2015 | 1.1175 | 0.6088 |
71
+ | 0.1938 | 2.0 | 4031 | 1.3762 | 0.6270 |
72
+ | 0.1452 | 3.0 | 6045 | 1.4313 | 0.6347 |
 
 
 
 
 
 
 
73
 
74
 
75
  ### Framework versions
76
 
77
+ - Transformers 4.36.0
78
+ - Pytorch 2.0.1
79
  - Datasets 2.15.0
80
  - Tokenizers 0.15.0