aaa12963337 commited on
Commit
ef7008f
·
1 Parent(s): 5ed6ae1

End of training

Browse files
Files changed (2) hide show
  1. README.md +28 -9
  2. model.safetensors +1 -1
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
 
 
8
  model-index:
9
  - name: msi-resnet-18-pretrain
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,13 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
19
  It achieves the following results on the evaluation set:
20
- - eval_loss: 0.4090
21
- - eval_accuracy: 0.8648
22
- - eval_runtime: 45.6695
23
- - eval_samples_per_second: 157.216
24
- - eval_steps_per_second: 9.831
25
- - epoch: 2.0
26
- - step: 3125
27
 
28
  ## Model description
29
 
@@ -51,7 +61,16 @@ The following hyperparameters were used during training:
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
  - lr_scheduler_warmup_ratio: 0.1
54
- - num_epochs: 10
 
 
 
 
 
 
 
 
 
55
 
56
  ### Framework versions
57
 
 
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: msi-resnet-18-pretrain
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8675487465181059
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.4121
36
+ - Accuracy: 0.8675
 
 
 
 
 
37
 
38
  ## Model description
39
 
 
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 3
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.1724 | 1.0 | 1562 | 0.3597 | 0.8806 |
71
+ | 0.0543 | 2.0 | 3125 | 0.3707 | 0.8875 |
72
+ | 0.0834 | 3.0 | 4686 | 0.4121 | 0.8675 |
73
+
74
 
75
  ### Framework versions
76
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d12bd1f0f3de56c3b42dc0c15a5c62051b0c1fc54fbd6892d442fcc2baf79f1a
3
  size 44778700
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f846819b6d30be6b510dbda3e42b31cb291224b57f2d12fae6135e6a8d830ca6
3
  size 44778700