metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_sentiment_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7113620044371958
demo_sentiment_1234567
This model is a fine-tuned version of distilbert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 0.6332
- F1: 0.7114
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8.62486660723695e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.7592 | 1.0 | 713 | 0.6509 | 0.6834 |
0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 |
0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 |
0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3