metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
base_model: distilbert-base-uncased
model-index:
- name: demo_irony_42
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- type: f1
value: 0.685764300192161
name: F1
demo_irony_42
This model is a fine-tuned version of distilbert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 1.2905
- F1: 0.6858
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7735294032820418e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 358 | 0.5872 | 0.6786 |
0.5869 | 2.0 | 716 | 0.6884 | 0.6952 |
0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 |
0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3