metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
model-index:
- name: distilbert-base-uncased_emotion_ft_1201
results: []
distilbert-base-uncased_emotion_ft_1201
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1468
- Accuracy: 0.938
- F1: 0.9379
- Precision: 0.9152
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision |
---|---|---|---|---|---|---|
0.7662 | 1.0 | 250 | 0.2631 | 0.9175 | 0.9177 | 0.8872 |
0.2059 | 2.0 | 500 | 0.1747 | 0.9335 | 0.9334 | 0.9098 |
0.137 | 3.0 | 750 | 0.1507 | 0.9345 | 0.9345 | 0.9064 |
0.1071 | 4.0 | 1000 | 0.1468 | 0.938 | 0.9379 | 0.9152 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3