a1nkit commited on
Commit
1373f93
·
1 Parent(s): 4b8e4b2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.85
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6477
36
+ - Accuracy: 0.85
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 4
57
+ - eval_batch_size: 4
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 3
60
+ - total_train_batch_size: 12
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 15
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.1618 | 1.0 | 75 | 2.0497 | 0.36 |
71
+ | 1.5327 | 2.0 | 150 | 1.4568 | 0.62 |
72
+ | 1.1622 | 3.0 | 225 | 1.1626 | 0.66 |
73
+ | 0.849 | 4.0 | 300 | 0.9894 | 0.74 |
74
+ | 0.6072 | 5.0 | 375 | 0.8128 | 0.75 |
75
+ | 0.4014 | 6.0 | 450 | 0.7118 | 0.79 |
76
+ | 0.3285 | 7.0 | 525 | 0.7482 | 0.83 |
77
+ | 0.3074 | 8.0 | 600 | 0.5633 | 0.85 |
78
+ | 0.242 | 9.0 | 675 | 0.6613 | 0.82 |
79
+ | 0.069 | 10.0 | 750 | 0.5173 | 0.85 |
80
+ | 0.1281 | 11.0 | 825 | 0.6102 | 0.83 |
81
+ | 0.0334 | 12.0 | 900 | 0.5990 | 0.84 |
82
+ | 0.0307 | 13.0 | 975 | 0.6227 | 0.86 |
83
+ | 0.0339 | 14.0 | 1050 | 0.6331 | 0.85 |
84
+ | 0.0239 | 15.0 | 1125 | 0.6477 | 0.85 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.32.0.dev0
90
+ - Pytorch 2.0.1+cu118
91
+ - Datasets 2.14.2
92
+ - Tokenizers 0.13.3