metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
According to the second chart the most popular country visited by UK
residents at this period of time was France, which was visited by about 11
millions of people of people.
- text: >-
According to first diagramm, half of Yemen's population in 2000 was
children 0-14 years old.
- text: >-
After 1980 part old people in USA rose slight and in Sweden this point
stay unchanged.
- text: >-
According to this charts people from the group 0-14 years take the biggest
proportion from Yemen citizens in 2001.
- text: >-
After 1996 the numbers in the USA and Sweden began to differ: while in the
USA the number of aged people fluctuated at the point of 14,8%, the
population of Sweden outlived a considerable growth from 13% to 20% in
2010.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-MiniLM-L6-v2
model-index:
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.6197183098591549
name: Accuracy
SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 5 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Word form transmission |
|
Tense semantics |
|
Synonyms |
|
Copying expression |
|
Transliteration |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.6197 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Zlovoblachko/L1-classifier")
# Run inference
preds = model("After 1980 part old people in USA rose slight and in Sweden this point stay unchanged.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 21.005 | 47 |
Label | Training Sample Count |
---|---|
Synonyms | 99 |
Copying expression | 26 |
Tense semantics | 27 |
Word form transmission | 40 |
Transliteration | 8 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0012 | 1 | 0.3375 | - |
0.0590 | 50 | 0.3628 | - |
0.1179 | 100 | 0.3312 | - |
0.1769 | 150 | 0.2342 | - |
0.2358 | 200 | 0.2665 | - |
0.2948 | 250 | 0.1857 | - |
0.3538 | 300 | 0.2134 | - |
0.4127 | 350 | 0.1786 | - |
0.4717 | 400 | 0.092 | - |
0.5307 | 450 | 0.2031 | - |
0.5896 | 500 | 0.1449 | - |
0.6486 | 550 | 0.1234 | - |
0.7075 | 600 | 0.0552 | - |
0.7665 | 650 | 0.0693 | - |
0.8255 | 700 | 0.097 | - |
0.8844 | 750 | 0.0448 | - |
0.9434 | 800 | 0.041 | - |
1.0024 | 850 | 0.0431 | - |
1.0613 | 900 | 0.0227 | - |
1.1203 | 950 | 0.061 | - |
1.1792 | 1000 | 0.0209 | - |
1.2382 | 1050 | 0.0071 | - |
1.2972 | 1100 | 0.0285 | - |
1.3561 | 1150 | 0.0039 | - |
1.4151 | 1200 | 0.0029 | - |
1.4741 | 1250 | 0.0097 | - |
1.5330 | 1300 | 0.0076 | - |
1.5920 | 1350 | 0.0021 | - |
1.6509 | 1400 | 0.015 | - |
1.7099 | 1450 | 0.0027 | - |
1.7689 | 1500 | 0.0204 | - |
1.8278 | 1550 | 0.013 | - |
1.8868 | 1600 | 0.0222 | - |
1.9458 | 1650 | 0.0427 | - |
2.0047 | 1700 | 0.0181 | - |
2.0637 | 1750 | 0.0232 | - |
2.1226 | 1800 | 0.0053 | - |
2.1816 | 1850 | 0.0169 | - |
2.2406 | 1900 | 0.006 | - |
2.2995 | 1950 | 0.0108 | - |
2.3585 | 2000 | 0.0034 | - |
2.4175 | 2050 | 0.0198 | - |
2.4764 | 2100 | 0.0006 | - |
2.5354 | 2150 | 0.0142 | - |
2.5943 | 2200 | 0.0038 | - |
2.6533 | 2250 | 0.0006 | - |
2.7123 | 2300 | 0.0007 | - |
2.7712 | 2350 | 0.0012 | - |
2.8302 | 2400 | 0.0003 | - |
2.8892 | 2450 | 0.0127 | - |
2.9481 | 2500 | 0.0181 | - |
3.0071 | 2550 | 0.006 | - |
3.0660 | 2600 | 0.0006 | - |
3.125 | 2650 | 0.0156 | - |
3.1840 | 2700 | 0.0427 | - |
3.2429 | 2750 | 0.0004 | - |
3.3019 | 2800 | 0.0013 | - |
3.3608 | 2850 | 0.0241 | - |
3.4198 | 2900 | 0.0004 | - |
3.4788 | 2950 | 0.0048 | - |
3.5377 | 3000 | 0.0004 | - |
3.5967 | 3050 | 0.0006 | - |
3.6557 | 3100 | 0.0044 | - |
3.7146 | 3150 | 0.0142 | - |
3.7736 | 3200 | 0.005 | - |
3.8325 | 3250 | 0.0022 | - |
3.8915 | 3300 | 0.0033 | - |
3.9505 | 3350 | 0.0033 | - |
4.0094 | 3400 | 0.0005 | - |
4.0684 | 3450 | 0.0299 | - |
4.1274 | 3500 | 0.0172 | - |
4.1863 | 3550 | 0.0079 | - |
4.2453 | 3600 | 0.0012 | - |
4.3042 | 3650 | 0.0093 | - |
4.3632 | 3700 | 0.0175 | - |
4.4222 | 3750 | 0.0278 | - |
4.4811 | 3800 | 0.0004 | - |
4.5401 | 3850 | 0.0054 | - |
4.5991 | 3900 | 0.002 | - |
4.6580 | 3950 | 0.0248 | - |
4.7170 | 4000 | 0.0173 | - |
4.7759 | 4050 | 0.0004 | - |
4.8349 | 4100 | 0.0154 | - |
4.8939 | 4150 | 0.0162 | - |
4.9528 | 4200 | 0.0052 | - |
5.0118 | 4250 | 0.0142 | - |
5.0708 | 4300 | 0.0109 | - |
5.1297 | 4350 | 0.0003 | - |
5.1887 | 4400 | 0.0002 | - |
5.2476 | 4450 | 0.0003 | - |
5.3066 | 4500 | 0.0081 | - |
5.3656 | 4550 | 0.0005 | - |
5.4245 | 4600 | 0.0229 | - |
5.4835 | 4650 | 0.0002 | - |
5.5425 | 4700 | 0.0004 | - |
5.6014 | 4750 | 0.0233 | - |
5.6604 | 4800 | 0.0086 | - |
5.7193 | 4850 | 0.0084 | - |
5.7783 | 4900 | 0.0177 | - |
5.8373 | 4950 | 0.0102 | - |
5.8962 | 5000 | 0.017 | - |
5.9552 | 5050 | 0.0037 | - |
6.0142 | 5100 | 0.005 | - |
6.0731 | 5150 | 0.0002 | - |
6.1321 | 5200 | 0.0188 | - |
6.1910 | 5250 | 0.0037 | - |
6.25 | 5300 | 0.0003 | - |
6.3090 | 5350 | 0.0137 | - |
6.3679 | 5400 | 0.0107 | - |
6.4269 | 5450 | 0.0045 | - |
6.4858 | 5500 | 0.0002 | - |
6.5448 | 5550 | 0.0238 | - |
6.6038 | 5600 | 0.0209 | - |
6.6627 | 5650 | 0.0003 | - |
6.7217 | 5700 | 0.0002 | - |
6.7807 | 5750 | 0.0029 | - |
6.8396 | 5800 | 0.0177 | - |
6.8986 | 5850 | 0.0165 | - |
6.9575 | 5900 | 0.0045 | - |
7.0165 | 5950 | 0.0203 | - |
7.0755 | 6000 | 0.0048 | - |
7.1344 | 6050 | 0.0251 | - |
7.1934 | 6100 | 0.0147 | - |
7.2524 | 6150 | 0.0033 | - |
7.3113 | 6200 | 0.0166 | - |
7.3703 | 6250 | 0.0129 | - |
7.4292 | 6300 | 0.0169 | - |
7.4882 | 6350 | 0.0001 | - |
7.5472 | 6400 | 0.0002 | - |
7.6061 | 6450 | 0.0029 | - |
7.6651 | 6500 | 0.0264 | - |
7.7241 | 6550 | 0.0079 | - |
7.7830 | 6600 | 0.0002 | - |
7.8420 | 6650 | 0.0157 | - |
7.9009 | 6700 | 0.0116 | - |
7.9599 | 6750 | 0.0031 | - |
8.0189 | 6800 | 0.0055 | - |
8.0778 | 6850 | 0.0113 | - |
8.1368 | 6900 | 0.0004 | - |
8.1958 | 6950 | 0.0301 | - |
8.2547 | 7000 | 0.0002 | - |
8.3137 | 7050 | 0.0169 | - |
8.3726 | 7100 | 0.0001 | - |
8.4316 | 7150 | 0.0165 | - |
8.4906 | 7200 | 0.0201 | - |
8.5495 | 7250 | 0.0168 | - |
8.6085 | 7300 | 0.0197 | - |
8.6675 | 7350 | 0.0165 | - |
8.7264 | 7400 | 0.0165 | - |
8.7854 | 7450 | 0.0002 | - |
8.8443 | 7500 | 0.0134 | - |
8.9033 | 7550 | 0.0037 | - |
8.9623 | 7600 | 0.0043 | - |
9.0212 | 7650 | 0.0001 | - |
9.0802 | 7700 | 0.0034 | - |
9.1392 | 7750 | 0.0036 | - |
9.1981 | 7800 | 0.0001 | - |
9.2571 | 7850 | 0.0069 | - |
9.3160 | 7900 | 0.0304 | - |
9.375 | 7950 | 0.0203 | - |
9.4340 | 8000 | 0.0002 | - |
9.4929 | 8050 | 0.0002 | - |
9.5519 | 8100 | 0.0058 | - |
9.6108 | 8150 | 0.0141 | - |
9.6698 | 8200 | 0.0031 | - |
9.7288 | 8250 | 0.0169 | - |
9.7877 | 8300 | 0.0002 | - |
9.8467 | 8350 | 0.0075 | - |
9.9057 | 8400 | 0.0192 | - |
9.9646 | 8450 | 0.0588 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 2.6.1
- Transformers: 4.38.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}