ZhengPeng7
commited on
Commit
•
108ae46
1
Parent(s):
af31851
Move all BiRefNet github codes to the first level directory.
Browse files- __init__.py +6 -0
- models/backbones/__init__.py +6 -0
- models/modules/__init__.py +6 -0
- models/modules/refinement/refiner.py +253 -0
- models/modules/refinement/stem_layer.py +45 -0
- models/refinement/__init__.py +6 -0
__init__.py
CHANGED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import dirname, basename, isfile, join
|
2 |
+
import glob
|
3 |
+
|
4 |
+
|
5 |
+
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
+
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
models/backbones/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import dirname, basename, isfile, join
|
2 |
+
import glob
|
3 |
+
|
4 |
+
|
5 |
+
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
+
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
models/modules/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import dirname, basename, isfile, join
|
2 |
+
import glob
|
3 |
+
|
4 |
+
|
5 |
+
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
+
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
models/modules/refinement/refiner.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from collections import OrderedDict
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torchvision.models import vgg16, vgg16_bn
|
8 |
+
from torchvision.models import resnet50
|
9 |
+
|
10 |
+
from config import Config
|
11 |
+
from dataset import class_labels_TR_sorted
|
12 |
+
from models.backbones.build_backbone import build_backbone
|
13 |
+
from models.modules.decoder_blocks import BasicDecBlk
|
14 |
+
from models.modules.lateral_blocks import BasicLatBlk
|
15 |
+
from models.modules.ing import *
|
16 |
+
from models.refinement.stem_layer import StemLayer
|
17 |
+
|
18 |
+
|
19 |
+
class RefinerPVTInChannels4(nn.Module):
|
20 |
+
def __init__(self, in_channels=3+1):
|
21 |
+
super(RefinerPVTInChannels4, self).__init__()
|
22 |
+
self.config = Config()
|
23 |
+
self.epoch = 1
|
24 |
+
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
|
25 |
+
|
26 |
+
lateral_channels_in_collection = {
|
27 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
28 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
29 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
30 |
+
}
|
31 |
+
channels = lateral_channels_in_collection[self.config.bb]
|
32 |
+
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
33 |
+
|
34 |
+
self.decoder = Decoder(channels)
|
35 |
+
|
36 |
+
if 0:
|
37 |
+
for key, value in self.named_parameters():
|
38 |
+
if 'bb.' in key:
|
39 |
+
value.requires_grad = False
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
if isinstance(x, list):
|
43 |
+
x = torch.cat(x, dim=1)
|
44 |
+
########## Encoder ##########
|
45 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
46 |
+
x1 = self.bb.conv1(x)
|
47 |
+
x2 = self.bb.conv2(x1)
|
48 |
+
x3 = self.bb.conv3(x2)
|
49 |
+
x4 = self.bb.conv4(x3)
|
50 |
+
else:
|
51 |
+
x1, x2, x3, x4 = self.bb(x)
|
52 |
+
|
53 |
+
x4 = self.squeeze_module(x4)
|
54 |
+
|
55 |
+
########## Decoder ##########
|
56 |
+
|
57 |
+
features = [x, x1, x2, x3, x4]
|
58 |
+
scaled_preds = self.decoder(features)
|
59 |
+
|
60 |
+
return scaled_preds
|
61 |
+
|
62 |
+
|
63 |
+
class Refiner(nn.Module):
|
64 |
+
def __init__(self, in_channels=3+1):
|
65 |
+
super(Refiner, self).__init__()
|
66 |
+
self.config = Config()
|
67 |
+
self.epoch = 1
|
68 |
+
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
69 |
+
self.bb = build_backbone(self.config.bb)
|
70 |
+
|
71 |
+
lateral_channels_in_collection = {
|
72 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
73 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
74 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
75 |
+
}
|
76 |
+
channels = lateral_channels_in_collection[self.config.bb]
|
77 |
+
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
78 |
+
|
79 |
+
self.decoder = Decoder(channels)
|
80 |
+
|
81 |
+
if 0:
|
82 |
+
for key, value in self.named_parameters():
|
83 |
+
if 'bb.' in key:
|
84 |
+
value.requires_grad = False
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
if isinstance(x, list):
|
88 |
+
x = torch.cat(x, dim=1)
|
89 |
+
x = self.stem_layer(x)
|
90 |
+
########## Encoder ##########
|
91 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
92 |
+
x1 = self.bb.conv1(x)
|
93 |
+
x2 = self.bb.conv2(x1)
|
94 |
+
x3 = self.bb.conv3(x2)
|
95 |
+
x4 = self.bb.conv4(x3)
|
96 |
+
else:
|
97 |
+
x1, x2, x3, x4 = self.bb(x)
|
98 |
+
|
99 |
+
x4 = self.squeeze_module(x4)
|
100 |
+
|
101 |
+
########## Decoder ##########
|
102 |
+
|
103 |
+
features = [x, x1, x2, x3, x4]
|
104 |
+
scaled_preds = self.decoder(features)
|
105 |
+
|
106 |
+
return scaled_preds
|
107 |
+
|
108 |
+
|
109 |
+
class Decoder(nn.Module):
|
110 |
+
def __init__(self, channels):
|
111 |
+
super(Decoder, self).__init__()
|
112 |
+
self.config = Config()
|
113 |
+
DecoderBlock = eval('BasicDecBlk')
|
114 |
+
LateralBlock = eval('BasicLatBlk')
|
115 |
+
|
116 |
+
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
|
117 |
+
self.decoder_block3 = DecoderBlock(channels[1], channels[2])
|
118 |
+
self.decoder_block2 = DecoderBlock(channels[2], channels[3])
|
119 |
+
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
|
120 |
+
|
121 |
+
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
122 |
+
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
123 |
+
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
124 |
+
|
125 |
+
if self.config.ms_supervision:
|
126 |
+
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
127 |
+
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
128 |
+
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
129 |
+
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
|
130 |
+
|
131 |
+
def forward(self, features):
|
132 |
+
x, x1, x2, x3, x4 = features
|
133 |
+
outs = []
|
134 |
+
p4 = self.decoder_block4(x4)
|
135 |
+
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
136 |
+
_p3 = _p4 + self.lateral_block4(x3)
|
137 |
+
|
138 |
+
p3 = self.decoder_block3(_p3)
|
139 |
+
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
140 |
+
_p2 = _p3 + self.lateral_block3(x2)
|
141 |
+
|
142 |
+
p2 = self.decoder_block2(_p2)
|
143 |
+
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
144 |
+
_p1 = _p2 + self.lateral_block2(x1)
|
145 |
+
|
146 |
+
_p1 = self.decoder_block1(_p1)
|
147 |
+
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
148 |
+
p1_out = self.conv_out1(_p1)
|
149 |
+
|
150 |
+
if self.config.ms_supervision:
|
151 |
+
outs.append(self.conv_ms_spvn_4(p4))
|
152 |
+
outs.append(self.conv_ms_spvn_3(p3))
|
153 |
+
outs.append(self.conv_ms_spvn_2(p2))
|
154 |
+
outs.append(p1_out)
|
155 |
+
return outs
|
156 |
+
|
157 |
+
|
158 |
+
class RefUNet(nn.Module):
|
159 |
+
# Refinement
|
160 |
+
def __init__(self, in_channels=3+1):
|
161 |
+
super(RefUNet, self).__init__()
|
162 |
+
self.encoder_1 = nn.Sequential(
|
163 |
+
nn.Conv2d(in_channels, 64, 3, 1, 1),
|
164 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
165 |
+
nn.BatchNorm2d(64),
|
166 |
+
nn.ReLU(inplace=True)
|
167 |
+
)
|
168 |
+
|
169 |
+
self.encoder_2 = nn.Sequential(
|
170 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
171 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
172 |
+
nn.BatchNorm2d(64),
|
173 |
+
nn.ReLU(inplace=True)
|
174 |
+
)
|
175 |
+
|
176 |
+
self.encoder_3 = nn.Sequential(
|
177 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
178 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
179 |
+
nn.BatchNorm2d(64),
|
180 |
+
nn.ReLU(inplace=True)
|
181 |
+
)
|
182 |
+
|
183 |
+
self.encoder_4 = nn.Sequential(
|
184 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
185 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
186 |
+
nn.BatchNorm2d(64),
|
187 |
+
nn.ReLU(inplace=True)
|
188 |
+
)
|
189 |
+
|
190 |
+
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
191 |
+
#####
|
192 |
+
self.decoder_5 = nn.Sequential(
|
193 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
194 |
+
nn.BatchNorm2d(64),
|
195 |
+
nn.ReLU(inplace=True)
|
196 |
+
)
|
197 |
+
#####
|
198 |
+
self.decoder_4 = nn.Sequential(
|
199 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
200 |
+
nn.BatchNorm2d(64),
|
201 |
+
nn.ReLU(inplace=True)
|
202 |
+
)
|
203 |
+
|
204 |
+
self.decoder_3 = nn.Sequential(
|
205 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
206 |
+
nn.BatchNorm2d(64),
|
207 |
+
nn.ReLU(inplace=True)
|
208 |
+
)
|
209 |
+
|
210 |
+
self.decoder_2 = nn.Sequential(
|
211 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
212 |
+
nn.BatchNorm2d(64),
|
213 |
+
nn.ReLU(inplace=True)
|
214 |
+
)
|
215 |
+
|
216 |
+
self.decoder_1 = nn.Sequential(
|
217 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
218 |
+
nn.BatchNorm2d(64),
|
219 |
+
nn.ReLU(inplace=True)
|
220 |
+
)
|
221 |
+
|
222 |
+
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
|
223 |
+
|
224 |
+
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
225 |
+
|
226 |
+
def forward(self, x):
|
227 |
+
outs = []
|
228 |
+
if isinstance(x, list):
|
229 |
+
x = torch.cat(x, dim=1)
|
230 |
+
hx = x
|
231 |
+
|
232 |
+
hx1 = self.encoder_1(hx)
|
233 |
+
hx2 = self.encoder_2(hx1)
|
234 |
+
hx3 = self.encoder_3(hx2)
|
235 |
+
hx4 = self.encoder_4(hx3)
|
236 |
+
|
237 |
+
hx = self.decoder_5(self.pool4(hx4))
|
238 |
+
hx = torch.cat((self.upscore2(hx), hx4), 1)
|
239 |
+
|
240 |
+
d4 = self.decoder_4(hx)
|
241 |
+
hx = torch.cat((self.upscore2(d4), hx3), 1)
|
242 |
+
|
243 |
+
d3 = self.decoder_3(hx)
|
244 |
+
hx = torch.cat((self.upscore2(d3), hx2), 1)
|
245 |
+
|
246 |
+
d2 = self.decoder_2(hx)
|
247 |
+
hx = torch.cat((self.upscore2(d2), hx1), 1)
|
248 |
+
|
249 |
+
d1 = self.decoder_1(hx)
|
250 |
+
|
251 |
+
x = self.conv_d0(d1)
|
252 |
+
outs.append(x)
|
253 |
+
return outs
|
models/modules/refinement/stem_layer.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from models.modules.utils import build_act_layer, build_norm_layer
|
3 |
+
|
4 |
+
|
5 |
+
class StemLayer(nn.Module):
|
6 |
+
r""" Stem layer of InternImage
|
7 |
+
Args:
|
8 |
+
in_channels (int): number of input channels
|
9 |
+
out_channels (int): number of output channels
|
10 |
+
act_layer (str): activation layer
|
11 |
+
norm_layer (str): normalization layer
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self,
|
15 |
+
in_channels=3+1,
|
16 |
+
inter_channels=48,
|
17 |
+
out_channels=96,
|
18 |
+
act_layer='GELU',
|
19 |
+
norm_layer='BN'):
|
20 |
+
super().__init__()
|
21 |
+
self.conv1 = nn.Conv2d(in_channels,
|
22 |
+
inter_channels,
|
23 |
+
kernel_size=3,
|
24 |
+
stride=1,
|
25 |
+
padding=1)
|
26 |
+
self.norm1 = build_norm_layer(
|
27 |
+
inter_channels, norm_layer, 'channels_first', 'channels_first'
|
28 |
+
)
|
29 |
+
self.act = build_act_layer(act_layer)
|
30 |
+
self.conv2 = nn.Conv2d(inter_channels,
|
31 |
+
out_channels,
|
32 |
+
kernel_size=3,
|
33 |
+
stride=1,
|
34 |
+
padding=1)
|
35 |
+
self.norm2 = build_norm_layer(
|
36 |
+
out_channels, norm_layer, 'channels_first', 'channels_first'
|
37 |
+
)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.conv1(x)
|
41 |
+
x = self.norm1(x)
|
42 |
+
x = self.act(x)
|
43 |
+
x = self.conv2(x)
|
44 |
+
x = self.norm2(x)
|
45 |
+
return x
|
models/refinement/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import dirname, basename, isfile, join
|
2 |
+
import glob
|
3 |
+
|
4 |
+
|
5 |
+
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
+
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|