ZhengPeng7's picture
Move all BiRefNet github codes to the first level directory.
d0e8e56
raw
history blame
8.35 kB
import torch
import torch.nn as nn
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16, vgg16_bn
from torchvision.models import resnet50
from config import Config
from dataset import class_labels_TR_sorted
from models.build_backbone import build_backbone
from models.decoder_blocks import BasicDecBlk
from models.lateral_blocks import BasicLatBlk
from models.ing import *
from models.stem_layer import StemLayer
class RefinerPVTInChannels4(nn.Module):
def __init__(self, in_channels=3+1):
super(RefinerPVTInChannels4, self).__init__()
self.config = Config()
self.epoch = 1
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
lateral_channels_in_collection = {
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
}
channels = lateral_channels_in_collection[self.config.bb]
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
self.decoder = Decoder(channels)
if 0:
for key, value in self.named_parameters():
if 'bb.' in key:
value.requires_grad = False
def forward(self, x):
if isinstance(x, list):
x = torch.cat(x, dim=1)
########## Encoder ##########
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
x1 = self.bb.conv1(x)
x2 = self.bb.conv2(x1)
x3 = self.bb.conv3(x2)
x4 = self.bb.conv4(x3)
else:
x1, x2, x3, x4 = self.bb(x)
x4 = self.squeeze_module(x4)
########## Decoder ##########
features = [x, x1, x2, x3, x4]
scaled_preds = self.decoder(features)
return scaled_preds
class Refiner(nn.Module):
def __init__(self, in_channels=3+1):
super(Refiner, self).__init__()
self.config = Config()
self.epoch = 1
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
self.bb = build_backbone(self.config.bb)
lateral_channels_in_collection = {
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
}
channels = lateral_channels_in_collection[self.config.bb]
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
self.decoder = Decoder(channels)
if 0:
for key, value in self.named_parameters():
if 'bb.' in key:
value.requires_grad = False
def forward(self, x):
if isinstance(x, list):
x = torch.cat(x, dim=1)
x = self.stem_layer(x)
########## Encoder ##########
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
x1 = self.bb.conv1(x)
x2 = self.bb.conv2(x1)
x3 = self.bb.conv3(x2)
x4 = self.bb.conv4(x3)
else:
x1, x2, x3, x4 = self.bb(x)
x4 = self.squeeze_module(x4)
########## Decoder ##########
features = [x, x1, x2, x3, x4]
scaled_preds = self.decoder(features)
return scaled_preds
class Decoder(nn.Module):
def __init__(self, channels):
super(Decoder, self).__init__()
self.config = Config()
DecoderBlock = eval('BasicDecBlk')
LateralBlock = eval('BasicLatBlk')
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
self.decoder_block3 = DecoderBlock(channels[1], channels[2])
self.decoder_block2 = DecoderBlock(channels[2], channels[3])
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
self.lateral_block4 = LateralBlock(channels[1], channels[1])
self.lateral_block3 = LateralBlock(channels[2], channels[2])
self.lateral_block2 = LateralBlock(channels[3], channels[3])
if self.config.ms_supervision:
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
def forward(self, features):
x, x1, x2, x3, x4 = features
outs = []
p4 = self.decoder_block4(x4)
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
_p3 = _p4 + self.lateral_block4(x3)
p3 = self.decoder_block3(_p3)
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
_p2 = _p3 + self.lateral_block3(x2)
p2 = self.decoder_block2(_p2)
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
_p1 = _p2 + self.lateral_block2(x1)
_p1 = self.decoder_block1(_p1)
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
p1_out = self.conv_out1(_p1)
if self.config.ms_supervision:
outs.append(self.conv_ms_spvn_4(p4))
outs.append(self.conv_ms_spvn_3(p3))
outs.append(self.conv_ms_spvn_2(p2))
outs.append(p1_out)
return outs
class RefUNet(nn.Module):
# Refinement
def __init__(self, in_channels=3+1):
super(RefUNet, self).__init__()
self.encoder_1 = nn.Sequential(
nn.Conv2d(in_channels, 64, 3, 1, 1),
nn.Conv2d(64, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.encoder_2 = nn.Sequential(
nn.MaxPool2d(2, 2, ceil_mode=True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.encoder_3 = nn.Sequential(
nn.MaxPool2d(2, 2, ceil_mode=True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.encoder_4 = nn.Sequential(
nn.MaxPool2d(2, 2, ceil_mode=True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
#####
self.decoder_5 = nn.Sequential(
nn.Conv2d(64, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
#####
self.decoder_4 = nn.Sequential(
nn.Conv2d(128, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.decoder_3 = nn.Sequential(
nn.Conv2d(128, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.decoder_2 = nn.Sequential(
nn.Conv2d(128, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.decoder_1 = nn.Sequential(
nn.Conv2d(128, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
def forward(self, x):
outs = []
if isinstance(x, list):
x = torch.cat(x, dim=1)
hx = x
hx1 = self.encoder_1(hx)
hx2 = self.encoder_2(hx1)
hx3 = self.encoder_3(hx2)
hx4 = self.encoder_4(hx3)
hx = self.decoder_5(self.pool4(hx4))
hx = torch.cat((self.upscore2(hx), hx4), 1)
d4 = self.decoder_4(hx)
hx = torch.cat((self.upscore2(d4), hx3), 1)
d3 = self.decoder_3(hx)
hx = torch.cat((self.upscore2(d3), hx2), 1)
d2 = self.decoder_2(hx)
hx = torch.cat((self.upscore2(d2), hx1), 1)
d1 = self.decoder_1(hx)
x = self.conv_d0(d1)
outs.append(x)
return outs