xrx
commited on
Commit
·
5192214
1
Parent(s):
6e106ce
Add initial model parameters and code
Browse files- LICENSE +84 -0
- README.md +75 -3
- config.json +47 -0
- demo.py +48 -0
- example.jpg +0 -0
- generation_config.json +6 -0
- llama3mixsense.py +50 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +750 -0
- modeling_mixsense_llama.py +687 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2079 -0
LICENSE
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
META LLAMA 3 COMMUNITY LICENSE AGREEMENT
|
2 |
+
|
3 |
+
Meta Llama 3 Version Release Date: April 18, 2024
|
4 |
+
“Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.
|
5 |
+
|
6 |
+
“Documentation” means the specifications, manuals and documentation accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.
|
7 |
+
|
8 |
+
“Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
|
9 |
+
|
10 |
+
“Meta Llama 3” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.
|
11 |
+
|
12 |
+
“Llama Materials” means, collectively, Meta’s proprietary Meta Llama 3 and Documentation (and any portion thereof) made available under this Agreement.
|
13 |
+
|
14 |
+
“Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).
|
15 |
+
|
16 |
+
By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.
|
17 |
+
|
18 |
+
1. License Rights and Redistribution.
|
19 |
+
|
20 |
+
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.
|
21 |
+
b. Redistribution and Use.
|
22 |
+
i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Meta Llama 3” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama 3” at the beginning of any such AI model name.
|
23 |
+
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.
|
24 |
+
iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Meta Llama 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”
|
25 |
+
iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference into this Agreement.
|
26 |
+
v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Meta Llama 3 or derivative works thereof).
|
27 |
+
|
28 |
+
2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
|
29 |
+
|
30 |
+
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
|
31 |
+
|
32 |
+
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
33 |
+
|
34 |
+
5. Intellectual Property.
|
35 |
+
a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama 3” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.
|
36 |
+
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.
|
37 |
+
c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.
|
38 |
+
|
39 |
+
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.
|
40 |
+
|
41 |
+
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.
|
42 |
+
|
43 |
+
|
44 |
+
Meta Llama 3 Acceptable Use Policy
|
45 |
+
Meta is committed to promoting safe and fair use of its tools and features, including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at https://llama.meta.com/llama3/use-policy
|
46 |
+
Prohibited Uses
|
47 |
+
We want everyone to use Meta Llama 3 safely and responsibly. You agree you will not use, or allow others to use, Meta Llama 3 to:
|
48 |
+
1. Violate the law or others’ rights, including to:
|
49 |
+
a. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
|
50 |
+
i. Violence or terrorism
|
51 |
+
ii. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
|
52 |
+
iii. Human trafficking, exploitation, and sexual violence
|
53 |
+
iv. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
|
54 |
+
v. Sexual solicitation
|
55 |
+
vi. Any other criminal activity
|
56 |
+
b. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
|
57 |
+
c. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
|
58 |
+
d. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
|
59 |
+
e. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
|
60 |
+
f. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
|
61 |
+
g. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
|
62 |
+
|
63 |
+
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Meta Llama 3 related to the following:
|
64 |
+
a. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
|
65 |
+
b. Guns and illegal weapons (including weapon development)
|
66 |
+
c. Illegal drugs and regulated/controlled substances
|
67 |
+
d. Operation of critical infrastructure, transportation technologies, or heavy machinery
|
68 |
+
e. Self-harm or harm to others, including suicide, cutting, and eating disorders
|
69 |
+
f. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
|
70 |
+
|
71 |
+
3. Intentionally deceive or mislead others, including use of Meta Llama 3 related to the following:
|
72 |
+
a. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
|
73 |
+
b. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
|
74 |
+
c. Generating, promoting, or further distributing spam
|
75 |
+
d. Impersonating another individual without consent, authorization, or legal right
|
76 |
+
e. Representing that the use of Meta Llama 3 or outputs are human-generated
|
77 |
+
f. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
|
78 |
+
g. Fail to appropriately disclose to end users any known dangers of your AI system
|
79 |
+
|
80 |
+
Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
|
81 |
+
* Reporting issues with the model: https://github.com/meta-llama/llama3
|
82 |
+
* Reporting risky content generated by the model: developers.facebook.com/llama_output_feedback
|
83 |
+
* Reporting bugs and security concerns: facebook.com/whitehat/info
|
84 |
+
* Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com
|
README.md
CHANGED
@@ -1,3 +1,75 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Introduction
|
2 |
+
MixSense is a series of models based on the widely adopted vision encoder-projector-LLM architecture. In this resource, we release Llama-3-MixSense checkpoint,which is Built with [Meta Llama 3](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the text encoder,and [SigLIP 400M](https://huggingface.co/google/siglip-so400m-patch14-384) as the vision encoder .
|
3 |
+
We have developed an innovative data processing method that complements the training process, reducing training costs while improving training effectiveness.,The models are trained on our restructured dataset. Details of the data organization and related research papers will be available soon.
|
4 |
+
|
5 |
+
# QuickStart
|
6 |
+
|
7 |
+
## Requirements
|
8 |
+
|
9 |
+
```
|
10 |
+
conda create -n mixsense python==3.10 -y
|
11 |
+
conda activate mixsense
|
12 |
+
pip install torch transformers==4.37.2 accelerate pillow
|
13 |
+
```
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
Llama-3-Mixsense/demo.py
|
18 |
+
|
19 |
+
``` python
|
20 |
+
import torch
|
21 |
+
import transformers
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
23 |
+
from PIL import Image
|
24 |
+
import warnings
|
25 |
+
import os
|
26 |
+
|
27 |
+
|
28 |
+
# disable some warnings
|
29 |
+
transformers.logging.set_verbosity_error()
|
30 |
+
transformers.logging.disable_progress_bar()
|
31 |
+
warnings.filterwarnings("ignore")
|
32 |
+
|
33 |
+
# set device
|
34 |
+
device = "cuda" # or cpu
|
35 |
+
|
36 |
+
# create model
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
"Zero-Vision/Llama-3-MixSense",
|
39 |
+
torch_dtype=torch.float16, # float32 for cpu
|
40 |
+
device_map="auto",
|
41 |
+
trust_remote_code=True,
|
42 |
+
)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
44 |
+
"Zero-Vision/Llama-3-MixSense",
|
45 |
+
trust_remote_code=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
qs = "describe the image detailly."
|
49 |
+
input_ids = model.text_process(qs, tokenizer).to(device)
|
50 |
+
|
51 |
+
image = Image.open("example.jpg")
|
52 |
+
image_tensor = model.image_process([image]).to(dtype=model.dtype, device=device)
|
53 |
+
|
54 |
+
# generate
|
55 |
+
with torch.inference_mode():
|
56 |
+
output_ids = model.generate(
|
57 |
+
input_ids,
|
58 |
+
images=image_tensor,
|
59 |
+
max_new_tokens=2048,
|
60 |
+
use_cache=True,
|
61 |
+
eos_token_id=[
|
62 |
+
tokenizer.eos_token_id,
|
63 |
+
tokenizer.convert_tokens_to_ids(["<|eot_id|>"])[0],
|
64 |
+
],
|
65 |
+
)
|
66 |
+
|
67 |
+
print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip())
|
68 |
+
```
|
69 |
+
## Eval
|
70 |
+
We offer Llama-3-Mixsense/llama3mixsense.py for [VLMEvalKit](https://github.com/open-compass/VLMEvalKit).
|
71 |
+
# License
|
72 |
+
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses.including but not limited to Llama3 and SigLIP. Meta Llama 3 is licensed under the [Meta Llama 3 Community License](https://llama.meta.com/llama3/license/), Copyright © Meta Platforms, Inc. All Rights Reserved. And [Apache LICENSE 2.0](https://www.apache.org/licenses/LICENSE-2.0) for SigLIP model. The project itself is licensed under the [Apache LICENSE 2.0](https://www.apache.org/licenses/LICENSE-2.0) .
|
73 |
+
# Acknowledgement
|
74 |
+
Our code is largely borrowed from [LLaVA](https://github.com/haotian-liu/LLaVA)
|
75 |
+
We bulid this demo according to [bunny](https://huggingface.co/BAAI/Bunny-Llama-3-8B-V)
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ZeroVision/Llama-3-Mixsense",
|
3 |
+
"architectures": [
|
4 |
+
"MixsenseLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "modeling_mixsense_llama.MixsenseConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_mixsense_llama.MixsenseLlamaForCausalLM"
|
9 |
+
},
|
10 |
+
"attention_bias": false,
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"eos_token_id": 128001,
|
14 |
+
"freeze_mm_mlp_adapter": false,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"image_aspect_ratio": "pad",
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 14336,
|
20 |
+
"max_position_embeddings": 8192,
|
21 |
+
"mm_hidden_size": 1152,
|
22 |
+
"mm_patch_merge_type": "flat",
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_use_im_patch_token": false,
|
26 |
+
"mm_use_im_start_end": false,
|
27 |
+
"mm_vision_select_feature": "patch",
|
28 |
+
"mm_vision_select_layer": -2,
|
29 |
+
"mm_vision_tower": "google/siglip-so400m-patch14-384",
|
30 |
+
"model_type": "mixsense_llama",
|
31 |
+
"num_attention_heads": 32,
|
32 |
+
"num_hidden_layers": 32,
|
33 |
+
"num_key_value_heads": 8,
|
34 |
+
"pretraining_tp": 1,
|
35 |
+
"rms_norm_eps": 1e-05,
|
36 |
+
"rope_scaling": null,
|
37 |
+
"rope_theta": 500000.0,
|
38 |
+
"tie_word_embeddings": false,
|
39 |
+
"tokenizer_model_max_length": 2048,
|
40 |
+
"tokenizer_padding_side": "right",
|
41 |
+
"torch_dtype": "bfloat16",
|
42 |
+
"transformers_version": "4.37.2",
|
43 |
+
"tune_mm_mlp_adapter": false,
|
44 |
+
"use_cache": true,
|
45 |
+
"use_mm_proj": true,
|
46 |
+
"vocab_size": 128257
|
47 |
+
}
|
demo.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from PIL import Image
|
5 |
+
import warnings
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
# disable some warnings
|
10 |
+
transformers.logging.set_verbosity_error()
|
11 |
+
transformers.logging.disable_progress_bar()
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
# set device
|
15 |
+
device = "cuda" # or cpu
|
16 |
+
|
17 |
+
# create model
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
"Zero-Vision/Llama-3-MixSense",
|
20 |
+
torch_dtype=torch.float16, # float32 for cpu
|
21 |
+
device_map="auto",
|
22 |
+
trust_remote_code=True,
|
23 |
+
)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
+
"Zero-Vision/Llama-3-MixSense",
|
26 |
+
trust_remote_code=True,
|
27 |
+
)
|
28 |
+
|
29 |
+
qs = "describe the image detailly."
|
30 |
+
input_ids = model.text_process(qs, tokenizer).to(device)
|
31 |
+
|
32 |
+
image = Image.open("example.jpg")
|
33 |
+
image_tensor = model.image_process([image]).to(dtype=model.dtype, device=device)
|
34 |
+
|
35 |
+
# generate
|
36 |
+
with torch.inference_mode():
|
37 |
+
output_ids = model.generate(
|
38 |
+
input_ids,
|
39 |
+
images=image_tensor,
|
40 |
+
max_new_tokens=2048,
|
41 |
+
use_cache=True,
|
42 |
+
eos_token_id=[
|
43 |
+
tokenizer.eos_token_id,
|
44 |
+
tokenizer.convert_tokens_to_ids(["<|eot_id|>"])[0],
|
45 |
+
],
|
46 |
+
)
|
47 |
+
|
48 |
+
print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip())
|
example.jpg
ADDED
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": 128001,
|
5 |
+
"transformers_version": "4.37.2"
|
6 |
+
}
|
llama3mixsense.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
This file if for VLMEvalKit.
|
3 |
+
'''
|
4 |
+
import torch
|
5 |
+
import transformers
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
from PIL import Image
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
from .base import BaseModel
|
11 |
+
from ..smp import *
|
12 |
+
from ..utils import DATASET_TYPE
|
13 |
+
|
14 |
+
|
15 |
+
class LLama3Mixsense(BaseModel):
|
16 |
+
|
17 |
+
INSTALL_REQ = False
|
18 |
+
INTERLEAVE = False
|
19 |
+
|
20 |
+
def __init__(self, model_path="ZeroVision/Llama-3-Mixsense", **kwargs):
|
21 |
+
assert model_path is not None
|
22 |
+
transformers.logging.set_verbosity_error()
|
23 |
+
transformers.logging.disable_progress_bar()
|
24 |
+
warnings.filterwarnings("ignore")
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
26 |
+
model_path, trust_remote_code=True
|
27 |
+
)
|
28 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_path, device_map="auto", trust_remote_code=True
|
30 |
+
)
|
31 |
+
self.kwargs = kwargs
|
32 |
+
|
33 |
+
def generate_inner(self, message, dataset=None):
|
34 |
+
prompt, image_path = self.message_to_promptimg(message)
|
35 |
+
input_ids=self.model.text_process(prompt, self.tokenizer)
|
36 |
+
image = Image.open(image_path).convert("RGB")
|
37 |
+
image_tensor = self.model.image_process([image]).to(dtype=self.model.dtype, device=device)
|
38 |
+
# generate
|
39 |
+
with torch.inference_mode():
|
40 |
+
output_ids = self.model.generate(
|
41 |
+
input_ids,
|
42 |
+
images=image_tensor,
|
43 |
+
max_new_tokens=2048,
|
44 |
+
use_cache=True,
|
45 |
+
eos_token_id=[
|
46 |
+
self.tokenizer.eos_token_id,
|
47 |
+
self.tokenizer.convert_tokens_to_ids(["<|eot_id|>"])[0],
|
48 |
+
],
|
49 |
+
)
|
50 |
+
return self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad7392198150b9c3d0851747545602e0eeb8ebe19e4af115d0c564036806bb4d
|
3 |
+
size 4976706864
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5d93d35cc21942101c184904dbbea8de291954a198d4f192d2a17a7d1b57cd5
|
3 |
+
size 4999802720
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97efeec9598e781e7a0158154779e0e1d058cfb11be22997c5aaf9e8e0fd48e4
|
3 |
+
size 4915916176
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e121982484aa45e2b7161da02e036956cc0759402e06466fc1724990820e12b
|
3 |
+
size 2067676864
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16959998080
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
296 |
+
"model.mm_projector.0.bias": "model-00004-of-00004.safetensors",
|
297 |
+
"model.mm_projector.0.weight": "model-00004-of-00004.safetensors",
|
298 |
+
"model.mm_projector.2.bias": "model-00004-of-00004.safetensors",
|
299 |
+
"model.mm_projector.2.weight": "model-00004-of-00004.safetensors",
|
300 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
301 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00004-of-00004.safetensors",
|
302 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
|
303 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
|
304 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
305 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
306 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
307 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
308 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
309 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
310 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
311 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
312 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
313 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
314 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
315 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
316 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
317 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
318 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
319 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
320 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
321 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
322 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
323 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
324 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
325 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
326 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
327 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
328 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
329 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
331 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
332 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
333 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
334 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
335 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
336 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
337 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
338 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
339 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
340 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
341 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
342 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
343 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
344 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
345 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
346 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
347 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
348 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
349 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
350 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
351 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
353 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
355 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
357 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
359 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
361 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
362 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
363 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
365 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
366 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
367 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
369 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
370 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
371 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
372 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
373 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
374 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
375 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
376 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
377 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
378 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
379 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
380 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
381 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
382 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
383 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
384 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
385 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
386 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
387 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
388 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
389 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
390 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
391 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
392 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
393 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
394 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
395 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
396 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
397 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
398 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
399 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
400 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
401 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
402 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
403 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
404 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
405 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
406 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
407 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
408 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
409 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
410 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
411 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
412 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
413 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
414 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
415 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
416 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
417 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
418 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
419 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
420 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
421 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
422 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
423 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
424 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
425 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
426 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
427 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
428 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
429 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
430 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
431 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
432 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
433 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
434 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
435 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
436 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
437 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
438 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
439 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
440 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
441 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
442 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
443 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
444 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
445 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
446 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
447 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
448 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
449 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
450 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
451 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
452 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
453 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
454 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
455 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
456 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
457 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
458 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
459 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
460 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
461 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
462 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
463 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
464 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
465 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
466 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
467 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
468 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
469 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
470 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
471 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
472 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
473 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
474 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
475 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
476 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
477 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
478 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
479 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
480 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
481 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
482 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
483 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
484 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
485 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
486 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
487 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
488 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
489 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
490 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
491 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
492 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
493 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
494 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
495 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
496 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
497 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
498 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
499 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
500 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
501 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
502 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
503 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
504 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
505 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
506 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
507 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
508 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
509 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
510 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
511 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
512 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
513 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
514 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
515 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
516 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
517 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
518 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
519 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
520 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
521 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
522 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
523 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
524 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
525 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
526 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
527 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
528 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
529 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
530 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
531 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
532 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
533 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
534 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
535 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
536 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
537 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
538 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
539 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
540 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
541 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
542 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
543 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
544 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
545 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
546 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
547 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
548 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
549 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
550 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
551 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
552 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
553 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
554 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
555 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
556 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
557 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
558 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
559 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
560 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
561 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
562 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
563 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
564 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
565 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
566 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
567 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
568 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
569 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
570 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
571 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
572 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
573 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
574 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
575 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
576 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
577 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
578 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
579 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
580 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
581 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
582 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
583 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
584 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
585 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
586 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
587 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
588 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
589 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
590 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
591 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
592 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
593 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
594 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
595 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
596 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
597 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
598 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
599 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
600 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
601 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
602 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
603 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
604 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
605 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
606 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
607 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
608 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
609 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
610 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
611 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
612 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
613 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
614 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
615 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
616 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
617 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
618 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
619 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
620 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
621 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
622 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
623 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
624 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
625 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
626 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
627 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
628 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
629 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
630 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
631 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
632 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
633 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
634 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
635 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
636 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
637 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
638 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
639 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
640 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
641 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
642 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
643 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
644 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
645 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
646 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
647 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
648 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
649 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
650 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
651 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
652 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
653 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
654 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
655 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
656 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
657 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
658 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
659 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
660 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
661 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
662 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
663 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
664 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
665 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
666 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
667 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
668 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
669 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
670 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
671 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
672 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
673 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
674 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
675 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
676 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
677 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
678 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
679 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
680 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
681 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
682 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
683 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
684 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
685 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
686 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
687 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
688 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
689 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
690 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
691 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
692 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
693 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
694 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
695 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
696 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
697 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
698 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
699 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
700 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
701 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
702 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
703 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
704 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
705 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
706 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
707 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
708 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
709 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
710 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
711 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
712 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
713 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
714 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
715 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
716 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
717 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
718 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
719 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
720 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
721 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
722 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
723 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
724 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
725 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
726 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
727 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
728 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
729 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
730 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
731 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
732 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
733 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
734 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
735 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
736 |
+
"model.vision_tower.vision_tower.vision_model.head.attention.in_proj_bias": "model-00004-of-00004.safetensors",
|
737 |
+
"model.vision_tower.vision_tower.vision_model.head.attention.in_proj_weight": "model-00004-of-00004.safetensors",
|
738 |
+
"model.vision_tower.vision_tower.vision_model.head.attention.out_proj.bias": "model-00004-of-00004.safetensors",
|
739 |
+
"model.vision_tower.vision_tower.vision_model.head.attention.out_proj.weight": "model-00004-of-00004.safetensors",
|
740 |
+
"model.vision_tower.vision_tower.vision_model.head.layernorm.bias": "model-00004-of-00004.safetensors",
|
741 |
+
"model.vision_tower.vision_tower.vision_model.head.layernorm.weight": "model-00004-of-00004.safetensors",
|
742 |
+
"model.vision_tower.vision_tower.vision_model.head.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
743 |
+
"model.vision_tower.vision_tower.vision_model.head.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
744 |
+
"model.vision_tower.vision_tower.vision_model.head.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
745 |
+
"model.vision_tower.vision_tower.vision_model.head.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
746 |
+
"model.vision_tower.vision_tower.vision_model.head.probe": "model-00004-of-00004.safetensors",
|
747 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
|
748 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors"
|
749 |
+
}
|
750 |
+
}
|
modeling_mixsense_llama.py
ADDED
@@ -0,0 +1,687 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig
|
4 |
+
class SiglipVisionTower(nn.Module):
|
5 |
+
|
6 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.is_loaded = False
|
10 |
+
|
11 |
+
self.vision_tower_name = vision_tower
|
12 |
+
self.select_layer = args.mm_vision_select_layer
|
13 |
+
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
|
14 |
+
|
15 |
+
if not delay_load:
|
16 |
+
self.load_model()
|
17 |
+
else:
|
18 |
+
self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name)
|
19 |
+
|
20 |
+
def load_model(self, device_map=None):
|
21 |
+
if self.is_loaded:
|
22 |
+
print(
|
23 |
+
"{} is already loaded, `load_model` called again, skipping.".format(
|
24 |
+
self.vision_tower_name
|
25 |
+
)
|
26 |
+
)
|
27 |
+
return
|
28 |
+
|
29 |
+
self.image_processor = SiglipImageProcessor.from_pretrained(
|
30 |
+
self.vision_tower_name
|
31 |
+
)
|
32 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(
|
33 |
+
self.vision_tower_name, device_map=device_map
|
34 |
+
)
|
35 |
+
self.vision_tower.requires_grad_(False)
|
36 |
+
|
37 |
+
self.is_loaded = True
|
38 |
+
|
39 |
+
def feature_select(self, image_forward_outs):
|
40 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
41 |
+
if self.select_feature == "patch":
|
42 |
+
image_features = image_features[:, 1:]
|
43 |
+
elif self.select_feature == "cls_patch":
|
44 |
+
image_features = image_features
|
45 |
+
else:
|
46 |
+
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
47 |
+
return image_features
|
48 |
+
|
49 |
+
@torch.no_grad()
|
50 |
+
def forward(self, images):
|
51 |
+
if type(images) is list:
|
52 |
+
image_features = []
|
53 |
+
for image in images:
|
54 |
+
image_forward_out = self.vision_tower(
|
55 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
56 |
+
output_hidden_states=True,
|
57 |
+
)
|
58 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
59 |
+
image_features.append(image_feature)
|
60 |
+
else:
|
61 |
+
image_forward_outs = self.vision_tower(
|
62 |
+
images.to(device=self.device, dtype=self.dtype),
|
63 |
+
output_hidden_states=True,
|
64 |
+
)
|
65 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
66 |
+
|
67 |
+
return image_features
|
68 |
+
|
69 |
+
@property
|
70 |
+
def dummy_feature(self):
|
71 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
72 |
+
|
73 |
+
@property
|
74 |
+
def dtype(self):
|
75 |
+
return self.vision_tower.dtype
|
76 |
+
|
77 |
+
@property
|
78 |
+
def device(self):
|
79 |
+
return self.vision_tower.device
|
80 |
+
|
81 |
+
@property
|
82 |
+
def config(self):
|
83 |
+
if self.is_loaded:
|
84 |
+
return self.vision_tower.config
|
85 |
+
else:
|
86 |
+
return self.cfg_only
|
87 |
+
|
88 |
+
@property
|
89 |
+
def hidden_size(self):
|
90 |
+
return self.config.hidden_size
|
91 |
+
|
92 |
+
@property
|
93 |
+
def num_patches_per_side(self):
|
94 |
+
return self.config.image_size // self.config.patch_size
|
95 |
+
|
96 |
+
@property
|
97 |
+
def num_patches(self):
|
98 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
99 |
+
|
100 |
+
from abc import ABC, abstractmethod
|
101 |
+
|
102 |
+
|
103 |
+
IGNORE_INDEX = -100
|
104 |
+
IMAGE_TOKEN_INDEX = -200
|
105 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
106 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
107 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
108 |
+
|
109 |
+
|
110 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
111 |
+
vision_tower = getattr(
|
112 |
+
vision_tower_cfg,
|
113 |
+
"mm_vision_tower",
|
114 |
+
getattr(vision_tower_cfg, "vision_tower", None),
|
115 |
+
)
|
116 |
+
return SiglipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
117 |
+
|
118 |
+
|
119 |
+
import re
|
120 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
121 |
+
projector_type = getattr(config, "mm_projector_type", "linear")
|
122 |
+
|
123 |
+
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
|
124 |
+
if mlp_gelu_match:
|
125 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
126 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
127 |
+
for _ in range(1, mlp_depth):
|
128 |
+
modules.append(nn.GELU())
|
129 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
130 |
+
return nn.Sequential(*modules)
|
131 |
+
|
132 |
+
|
133 |
+
class MixsenseMetaModel:
|
134 |
+
|
135 |
+
def __init__(self, config):
|
136 |
+
super(MixsenseMetaModel, self).__init__(config)
|
137 |
+
|
138 |
+
if hasattr(config, "mm_vision_tower"):
|
139 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
140 |
+
self.mm_projector = build_vision_projector(config)
|
141 |
+
|
142 |
+
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
|
143 |
+
self.image_newline = nn.Parameter(
|
144 |
+
torch.empty(config.hidden_size, dtype=self.dtype)
|
145 |
+
)
|
146 |
+
|
147 |
+
def get_vision_tower(self):
|
148 |
+
vision_tower = getattr(self, "vision_tower", None)
|
149 |
+
if type(vision_tower) is list:
|
150 |
+
vision_tower = vision_tower[0]
|
151 |
+
return vision_tower
|
152 |
+
|
153 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
154 |
+
vision_tower = model_args.vision_tower
|
155 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
156 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
157 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
158 |
+
mm_patch_merge_type = model_args.mm_patch_merge_type
|
159 |
+
|
160 |
+
self.config.mm_vision_tower = vision_tower
|
161 |
+
|
162 |
+
if self.get_vision_tower() is None:
|
163 |
+
vision_tower = build_vision_tower(model_args)
|
164 |
+
|
165 |
+
if fsdp is not None and len(fsdp) > 0:
|
166 |
+
self.vision_tower = [vision_tower]
|
167 |
+
else:
|
168 |
+
self.vision_tower = vision_tower
|
169 |
+
else:
|
170 |
+
if fsdp is not None and len(fsdp) > 0:
|
171 |
+
vision_tower = self.vision_tower[0]
|
172 |
+
else:
|
173 |
+
vision_tower = self.vision_tower
|
174 |
+
vision_tower.load_model()
|
175 |
+
|
176 |
+
self.config.use_mm_proj = True
|
177 |
+
self.config.mm_projector_type = getattr(
|
178 |
+
model_args, "mm_projector_type", "linear"
|
179 |
+
)
|
180 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
181 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
182 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
183 |
+
self.config.mm_patch_merge_type = mm_patch_merge_type
|
184 |
+
|
185 |
+
if getattr(self, "mm_projector", None) is None:
|
186 |
+
self.mm_projector = build_vision_projector(self.config)
|
187 |
+
|
188 |
+
if "unpad" in mm_patch_merge_type:
|
189 |
+
embed_std = 1 / torch.sqrt(
|
190 |
+
torch.tensor(self.config.hidden_size, dtype=self.dtype)
|
191 |
+
)
|
192 |
+
self.image_newline = nn.Parameter(
|
193 |
+
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
# In case it is frozen by LoRA
|
197 |
+
for p in self.mm_projector.parameters():
|
198 |
+
p.requires_grad = True
|
199 |
+
|
200 |
+
if pretrain_mm_mlp_adapter is not None:
|
201 |
+
mm_projector_weights = torch.load(
|
202 |
+
pretrain_mm_mlp_adapter, map_location="cpu"
|
203 |
+
)
|
204 |
+
|
205 |
+
def get_w(weights, keyword):
|
206 |
+
return {
|
207 |
+
k.split(keyword + ".")[1]: v
|
208 |
+
for k, v in weights.items()
|
209 |
+
if keyword in k
|
210 |
+
}
|
211 |
+
|
212 |
+
self.mm_projector.load_state_dict(
|
213 |
+
get_w(mm_projector_weights, "mm_projector")
|
214 |
+
)
|
215 |
+
|
216 |
+
|
217 |
+
class MixsenseMetaForCausalLM(ABC):
|
218 |
+
|
219 |
+
@abstractmethod
|
220 |
+
def get_model(self):
|
221 |
+
pass
|
222 |
+
|
223 |
+
def get_vision_tower(self):
|
224 |
+
return self.get_model().get_vision_tower()
|
225 |
+
|
226 |
+
def encode_images(self, images):
|
227 |
+
image_features = self.get_model().get_vision_tower()(images)
|
228 |
+
image_features = self.get_model().mm_projector(image_features)
|
229 |
+
return image_features
|
230 |
+
|
231 |
+
def prepare_inputs_labels_for_multimodal(
|
232 |
+
self,
|
233 |
+
input_ids,
|
234 |
+
position_ids,
|
235 |
+
attention_mask,
|
236 |
+
past_key_values,
|
237 |
+
labels,
|
238 |
+
images,
|
239 |
+
image_sizes=None,
|
240 |
+
):
|
241 |
+
vision_tower = self.get_vision_tower()
|
242 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
243 |
+
return (
|
244 |
+
input_ids,
|
245 |
+
position_ids,
|
246 |
+
attention_mask,
|
247 |
+
past_key_values,
|
248 |
+
None,
|
249 |
+
labels,
|
250 |
+
)
|
251 |
+
elif type(images) is list or images.ndim == 5:
|
252 |
+
if type(images) is list:
|
253 |
+
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
|
254 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
255 |
+
image_features = self.encode_images(concat_images)
|
256 |
+
split_sizes = [image.shape[0] for image in images]
|
257 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
258 |
+
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
|
259 |
+
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
|
260 |
+
if mm_patch_merge_type == "flat":
|
261 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
262 |
+
else:
|
263 |
+
image_features = self.encode_images(images)
|
264 |
+
|
265 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
266 |
+
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
|
267 |
+
self.config, "mm_use_im_start_end", False
|
268 |
+
):
|
269 |
+
raise NotImplementedError
|
270 |
+
|
271 |
+
# Let's just add dummy tensors if they do not exist,
|
272 |
+
# it is a headache to deal with None all the time.
|
273 |
+
# But it is not ideal, and if you have a better idea,
|
274 |
+
# please open an issue / submit a PR, thanks.
|
275 |
+
_labels = labels
|
276 |
+
_position_ids = position_ids
|
277 |
+
_attention_mask = attention_mask
|
278 |
+
if attention_mask is None:
|
279 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
280 |
+
else:
|
281 |
+
attention_mask = attention_mask.bool()
|
282 |
+
if position_ids is None:
|
283 |
+
position_ids = torch.arange(
|
284 |
+
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
|
285 |
+
)
|
286 |
+
if labels is None:
|
287 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
288 |
+
|
289 |
+
# remove the padding using attention_mask -- FIXME
|
290 |
+
_input_ids = input_ids
|
291 |
+
input_ids = [
|
292 |
+
cur_input_ids[cur_attention_mask]
|
293 |
+
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
|
294 |
+
]
|
295 |
+
labels = [
|
296 |
+
cur_labels[cur_attention_mask]
|
297 |
+
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
|
298 |
+
]
|
299 |
+
|
300 |
+
new_input_embeds = []
|
301 |
+
new_labels = []
|
302 |
+
cur_image_idx = 0
|
303 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
304 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
305 |
+
if num_images == 0:
|
306 |
+
cur_image_features = image_features[cur_image_idx]
|
307 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
308 |
+
cur_input_embeds = torch.cat(
|
309 |
+
[cur_input_embeds_1, cur_image_features[0:0]], dim=0
|
310 |
+
)
|
311 |
+
new_input_embeds.append(cur_input_embeds)
|
312 |
+
new_labels.append(labels[batch_idx])
|
313 |
+
cur_image_idx += 1
|
314 |
+
continue
|
315 |
+
|
316 |
+
image_token_indices = (
|
317 |
+
[-1]
|
318 |
+
+ torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
|
319 |
+
+ [cur_input_ids.shape[0]]
|
320 |
+
)
|
321 |
+
cur_input_ids_noim = []
|
322 |
+
cur_labels = labels[batch_idx]
|
323 |
+
cur_labels_noim = []
|
324 |
+
for i in range(len(image_token_indices) - 1):
|
325 |
+
cur_input_ids_noim.append(
|
326 |
+
cur_input_ids[
|
327 |
+
image_token_indices[i] + 1 : image_token_indices[i + 1]
|
328 |
+
]
|
329 |
+
)
|
330 |
+
cur_labels_noim.append(
|
331 |
+
cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]
|
332 |
+
)
|
333 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
334 |
+
cur_input_embeds = self.get_model().embed_tokens(
|
335 |
+
torch.cat(cur_input_ids_noim)
|
336 |
+
)
|
337 |
+
|
338 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
339 |
+
cur_new_input_embeds = []
|
340 |
+
cur_new_labels = []
|
341 |
+
|
342 |
+
for i in range(num_images + 1):
|
343 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
344 |
+
cur_new_labels.append(cur_labels_noim[i])
|
345 |
+
if i < num_images:
|
346 |
+
cur_image_features = image_features[cur_image_idx]
|
347 |
+
cur_image_idx += 1
|
348 |
+
cur_new_input_embeds.append(cur_image_features)
|
349 |
+
cur_new_labels.append(
|
350 |
+
torch.full(
|
351 |
+
(cur_image_features.shape[0],),
|
352 |
+
IGNORE_INDEX,
|
353 |
+
device=cur_labels.device,
|
354 |
+
dtype=cur_labels.dtype,
|
355 |
+
)
|
356 |
+
)
|
357 |
+
|
358 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
359 |
+
|
360 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
361 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
362 |
+
|
363 |
+
new_input_embeds.append(cur_new_input_embeds)
|
364 |
+
new_labels.append(cur_new_labels)
|
365 |
+
|
366 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
367 |
+
tokenizer_model_max_length = getattr(
|
368 |
+
self.config, "tokenizer_model_max_length", None
|
369 |
+
)
|
370 |
+
if tokenizer_model_max_length is not None:
|
371 |
+
new_input_embeds = [
|
372 |
+
x[:tokenizer_model_max_length] for x in new_input_embeds
|
373 |
+
]
|
374 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
375 |
+
|
376 |
+
# Combine them
|
377 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
378 |
+
batch_size = len(new_input_embeds)
|
379 |
+
|
380 |
+
new_input_embeds_padded = []
|
381 |
+
new_labels_padded = torch.full(
|
382 |
+
(batch_size, max_len),
|
383 |
+
IGNORE_INDEX,
|
384 |
+
dtype=new_labels[0].dtype,
|
385 |
+
device=new_labels[0].device,
|
386 |
+
)
|
387 |
+
attention_mask = torch.zeros(
|
388 |
+
(batch_size, max_len),
|
389 |
+
dtype=attention_mask.dtype,
|
390 |
+
device=attention_mask.device,
|
391 |
+
)
|
392 |
+
position_ids = torch.zeros(
|
393 |
+
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
|
394 |
+
)
|
395 |
+
|
396 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(
|
397 |
+
zip(new_input_embeds, new_labels)
|
398 |
+
):
|
399 |
+
cur_len = cur_new_embed.shape[0]
|
400 |
+
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
|
401 |
+
new_input_embeds_padded.append(
|
402 |
+
torch.cat(
|
403 |
+
(
|
404 |
+
torch.zeros(
|
405 |
+
(max_len - cur_len, cur_new_embed.shape[1]),
|
406 |
+
dtype=cur_new_embed.dtype,
|
407 |
+
device=cur_new_embed.device,
|
408 |
+
),
|
409 |
+
cur_new_embed,
|
410 |
+
),
|
411 |
+
dim=0,
|
412 |
+
)
|
413 |
+
)
|
414 |
+
if cur_len > 0:
|
415 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
416 |
+
attention_mask[i, -cur_len:] = True
|
417 |
+
position_ids[i, -cur_len:] = torch.arange(
|
418 |
+
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
|
419 |
+
)
|
420 |
+
else:
|
421 |
+
new_input_embeds_padded.append(
|
422 |
+
torch.cat(
|
423 |
+
(
|
424 |
+
cur_new_embed,
|
425 |
+
torch.zeros(
|
426 |
+
(max_len - cur_len, cur_new_embed.shape[1]),
|
427 |
+
dtype=cur_new_embed.dtype,
|
428 |
+
device=cur_new_embed.device,
|
429 |
+
),
|
430 |
+
),
|
431 |
+
dim=0,
|
432 |
+
)
|
433 |
+
)
|
434 |
+
if cur_len > 0:
|
435 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
436 |
+
attention_mask[i, :cur_len] = True
|
437 |
+
position_ids[i, :cur_len] = torch.arange(
|
438 |
+
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
|
439 |
+
)
|
440 |
+
|
441 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
442 |
+
|
443 |
+
if _labels is None:
|
444 |
+
new_labels = None
|
445 |
+
else:
|
446 |
+
new_labels = new_labels_padded
|
447 |
+
|
448 |
+
if _attention_mask is None:
|
449 |
+
attention_mask = None
|
450 |
+
else:
|
451 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
452 |
+
|
453 |
+
if _position_ids is None:
|
454 |
+
position_ids = None
|
455 |
+
|
456 |
+
return (
|
457 |
+
None,
|
458 |
+
position_ids,
|
459 |
+
attention_mask,
|
460 |
+
past_key_values,
|
461 |
+
new_input_embeds,
|
462 |
+
new_labels,
|
463 |
+
)
|
464 |
+
|
465 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
466 |
+
if model_args.mm_use_im_patch_token:
|
467 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
468 |
+
self.resize_token_embeddings(len(tokenizer))
|
469 |
+
|
470 |
+
if model_args.mm_use_im_start_end:
|
471 |
+
num_new_tokens = tokenizer.add_tokens(
|
472 |
+
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
|
473 |
+
)
|
474 |
+
self.resize_token_embeddings(len(tokenizer))
|
475 |
+
|
476 |
+
if num_new_tokens > 0:
|
477 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
478 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
479 |
+
|
480 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
481 |
+
dim=0, keepdim=True
|
482 |
+
)
|
483 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
484 |
+
dim=0, keepdim=True
|
485 |
+
)
|
486 |
+
|
487 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
488 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
489 |
+
|
490 |
+
if model_args.tune_mm_mlp_adapter:
|
491 |
+
for p in self.get_input_embeddings().parameters():
|
492 |
+
p.requires_grad = True
|
493 |
+
for p in self.get_output_embeddings().parameters():
|
494 |
+
p.requires_grad = False
|
495 |
+
|
496 |
+
if model_args.pretrain_mm_mlp_adapter:
|
497 |
+
mm_projector_weights = torch.load(
|
498 |
+
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
|
499 |
+
)
|
500 |
+
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
|
501 |
+
assert num_new_tokens == 2
|
502 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
503 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[
|
504 |
+
-num_new_tokens:
|
505 |
+
]
|
506 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
507 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
508 |
+
else:
|
509 |
+
raise ValueError(
|
510 |
+
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
|
511 |
+
)
|
512 |
+
elif model_args.mm_use_im_patch_token:
|
513 |
+
if model_args.tune_mm_mlp_adapter:
|
514 |
+
for p in self.get_input_embeddings().parameters():
|
515 |
+
p.requires_grad = False
|
516 |
+
for p in self.get_output_embeddings().parameters():
|
517 |
+
p.requires_grad = False
|
518 |
+
|
519 |
+
from typing import List, Optional, Tuple, Union
|
520 |
+
from transformers import (
|
521 |
+
AutoConfig,
|
522 |
+
AutoModelForCausalLM,
|
523 |
+
LlamaConfig,
|
524 |
+
LlamaModel,
|
525 |
+
LlamaForCausalLM,
|
526 |
+
)
|
527 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
528 |
+
from transformers.generation.utils import GenerateOutput
|
529 |
+
|
530 |
+
|
531 |
+
class MixsenseConfig(LlamaConfig):
|
532 |
+
model_type = "mixsense_llama"
|
533 |
+
|
534 |
+
|
535 |
+
class MixsenseLlamaModel(MixsenseMetaModel, LlamaModel):
|
536 |
+
config_class = MixsenseConfig
|
537 |
+
|
538 |
+
def __init__(self, config: LlamaConfig):
|
539 |
+
super(MixsenseLlamaModel, self).__init__(config)
|
540 |
+
|
541 |
+
|
542 |
+
class MixsenseLlamaForCausalLM(LlamaForCausalLM, MixsenseMetaForCausalLM):
|
543 |
+
config_class = MixsenseConfig
|
544 |
+
|
545 |
+
def __init__(self, config):
|
546 |
+
super(LlamaForCausalLM, self).__init__(config)
|
547 |
+
self.model = MixsenseLlamaModel(config)
|
548 |
+
self.pretraining_tp = config.pretraining_tp
|
549 |
+
self.vocab_size = config.vocab_size
|
550 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
551 |
+
|
552 |
+
# Initialize weights and apply final processing
|
553 |
+
self.post_init()
|
554 |
+
|
555 |
+
def get_model(self):
|
556 |
+
return self.model
|
557 |
+
|
558 |
+
def forward(
|
559 |
+
self,
|
560 |
+
input_ids: torch.LongTensor = None,
|
561 |
+
attention_mask: Optional[torch.Tensor] = None,
|
562 |
+
position_ids: Optional[torch.LongTensor] = None,
|
563 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
564 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
565 |
+
labels: Optional[torch.LongTensor] = None,
|
566 |
+
use_cache: Optional[bool] = None,
|
567 |
+
output_attentions: Optional[bool] = None,
|
568 |
+
output_hidden_states: Optional[bool] = None,
|
569 |
+
images: Optional[torch.FloatTensor] = None,
|
570 |
+
image_sizes: Optional[List[List[int]]] = None,
|
571 |
+
return_dict: Optional[bool] = None,
|
572 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
573 |
+
if inputs_embeds is None:
|
574 |
+
(
|
575 |
+
input_ids,
|
576 |
+
position_ids,
|
577 |
+
attention_mask,
|
578 |
+
past_key_values,
|
579 |
+
inputs_embeds,
|
580 |
+
labels,
|
581 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
582 |
+
input_ids,
|
583 |
+
position_ids,
|
584 |
+
attention_mask,
|
585 |
+
past_key_values,
|
586 |
+
labels,
|
587 |
+
images,
|
588 |
+
image_sizes,
|
589 |
+
)
|
590 |
+
return super().forward(
|
591 |
+
input_ids=input_ids,
|
592 |
+
attention_mask=attention_mask,
|
593 |
+
position_ids=position_ids,
|
594 |
+
past_key_values=past_key_values,
|
595 |
+
inputs_embeds=inputs_embeds,
|
596 |
+
labels=labels,
|
597 |
+
use_cache=use_cache,
|
598 |
+
output_attentions=output_attentions,
|
599 |
+
output_hidden_states=output_hidden_states,
|
600 |
+
return_dict=return_dict,
|
601 |
+
)
|
602 |
+
|
603 |
+
@torch.no_grad()
|
604 |
+
def generate(
|
605 |
+
self,
|
606 |
+
inputs: Optional[torch.Tensor] = None,
|
607 |
+
images: Optional[torch.Tensor] = None,
|
608 |
+
image_sizes: Optional[torch.Tensor] = None,
|
609 |
+
**kwargs,
|
610 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
611 |
+
position_ids = kwargs.pop("position_ids", None)
|
612 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
613 |
+
if "inputs_embeds" in kwargs:
|
614 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
615 |
+
if images is not None:
|
616 |
+
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = (
|
617 |
+
self.prepare_inputs_labels_for_multimodal(
|
618 |
+
inputs,
|
619 |
+
position_ids,
|
620 |
+
attention_mask,
|
621 |
+
None,
|
622 |
+
None,
|
623 |
+
images,
|
624 |
+
image_sizes=image_sizes,
|
625 |
+
)
|
626 |
+
)
|
627 |
+
else:
|
628 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
629 |
+
output = super().generate(
|
630 |
+
position_ids=position_ids,
|
631 |
+
attention_mask=attention_mask,
|
632 |
+
inputs_embeds=inputs_embeds,
|
633 |
+
**kwargs,
|
634 |
+
)
|
635 |
+
return output
|
636 |
+
|
637 |
+
def prepare_inputs_for_generation(
|
638 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
639 |
+
):
|
640 |
+
images = kwargs.pop("images", None)
|
641 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
642 |
+
inputs = super().prepare_inputs_for_generation(
|
643 |
+
input_ids,
|
644 |
+
past_key_values=past_key_values,
|
645 |
+
inputs_embeds=inputs_embeds,
|
646 |
+
**kwargs,
|
647 |
+
)
|
648 |
+
if images is not None:
|
649 |
+
inputs["images"] = images
|
650 |
+
if image_sizes is not None:
|
651 |
+
inputs["image_sizes"] = image_sizes
|
652 |
+
return inputs
|
653 |
+
def image_process(self,images):
|
654 |
+
vision_tower = self.get_vision_tower()
|
655 |
+
if not vision_tower.is_loaded:
|
656 |
+
vision_tower.load_model()
|
657 |
+
processor = vision_tower.image_processor
|
658 |
+
def expand2square(pil_img, background_color):
|
659 |
+
from PIL import Image
|
660 |
+
width, height = pil_img.size
|
661 |
+
if width == height:
|
662 |
+
return pil_img
|
663 |
+
elif width > height:
|
664 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
665 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
666 |
+
return result
|
667 |
+
else:
|
668 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
669 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
670 |
+
return result
|
671 |
+
processed_images=[]
|
672 |
+
for image in images:
|
673 |
+
image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
|
674 |
+
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
675 |
+
processed_images.append(image)
|
676 |
+
if all(x.shape == processed_images[0].shape for x in processed_images):
|
677 |
+
processed_images = torch.stack(processed_images, dim=0)
|
678 |
+
return processed_images
|
679 |
+
def text_process(self,text,tokenizer):
|
680 |
+
prompt=f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\n{text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
681 |
+
text_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
682 |
+
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][1:], dtype=torch.long).unsqueeze(0)
|
683 |
+
return input_ids
|
684 |
+
|
685 |
+
|
686 |
+
AutoConfig.register("mixsense_llama", MixsenseConfig)
|
687 |
+
AutoModelForCausalLM.register(MixsenseConfig, MixsenseLlamaForCausalLM)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end_of_text|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2079 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "!",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128000": {
|
12 |
+
"content": "<|begin_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128001": {
|
20 |
+
"content": "<|end_of_text|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128002": {
|
28 |
+
"content": "<|reserved_special_token_0|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128003": {
|
36 |
+
"content": "<|reserved_special_token_1|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128004": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128005": {
|
52 |
+
"content": "<|reserved_special_token_3|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128006": {
|
60 |
+
"content": "<|start_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128007": {
|
68 |
+
"content": "<|end_header_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128008": {
|
76 |
+
"content": "<|reserved_special_token_4|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128009": {
|
84 |
+
"content": "<|eot_id|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128010": {
|
92 |
+
"content": "<|reserved_special_token_5|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128011": {
|
100 |
+
"content": "<|reserved_special_token_6|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128012": {
|
108 |
+
"content": "<|reserved_special_token_7|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128013": {
|
116 |
+
"content": "<|reserved_special_token_8|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128014": {
|
124 |
+
"content": "<|reserved_special_token_9|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128015": {
|
132 |
+
"content": "<|reserved_special_token_10|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128016": {
|
140 |
+
"content": "<|reserved_special_token_11|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128017": {
|
148 |
+
"content": "<|reserved_special_token_12|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128018": {
|
156 |
+
"content": "<|reserved_special_token_13|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128019": {
|
164 |
+
"content": "<|reserved_special_token_14|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128020": {
|
172 |
+
"content": "<|reserved_special_token_15|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128021": {
|
180 |
+
"content": "<|reserved_special_token_16|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128022": {
|
188 |
+
"content": "<|reserved_special_token_17|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128023": {
|
196 |
+
"content": "<|reserved_special_token_18|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128024": {
|
204 |
+
"content": "<|reserved_special_token_19|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128025": {
|
212 |
+
"content": "<|reserved_special_token_20|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128026": {
|
220 |
+
"content": "<|reserved_special_token_21|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128027": {
|
228 |
+
"content": "<|reserved_special_token_22|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128028": {
|
236 |
+
"content": "<|reserved_special_token_23|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128029": {
|
244 |
+
"content": "<|reserved_special_token_24|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128030": {
|
252 |
+
"content": "<|reserved_special_token_25|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128031": {
|
260 |
+
"content": "<|reserved_special_token_26|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128032": {
|
268 |
+
"content": "<|reserved_special_token_27|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128033": {
|
276 |
+
"content": "<|reserved_special_token_28|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128034": {
|
284 |
+
"content": "<|reserved_special_token_29|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128035": {
|
292 |
+
"content": "<|reserved_special_token_30|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128036": {
|
300 |
+
"content": "<|reserved_special_token_31|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128037": {
|
308 |
+
"content": "<|reserved_special_token_32|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128038": {
|
316 |
+
"content": "<|reserved_special_token_33|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128039": {
|
324 |
+
"content": "<|reserved_special_token_34|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128040": {
|
332 |
+
"content": "<|reserved_special_token_35|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128041": {
|
340 |
+
"content": "<|reserved_special_token_36|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128042": {
|
348 |
+
"content": "<|reserved_special_token_37|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128043": {
|
356 |
+
"content": "<|reserved_special_token_38|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128044": {
|
364 |
+
"content": "<|reserved_special_token_39|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128045": {
|
372 |
+
"content": "<|reserved_special_token_40|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128046": {
|
380 |
+
"content": "<|reserved_special_token_41|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128047": {
|
388 |
+
"content": "<|reserved_special_token_42|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128048": {
|
396 |
+
"content": "<|reserved_special_token_43|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128049": {
|
404 |
+
"content": "<|reserved_special_token_44|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128050": {
|
412 |
+
"content": "<|reserved_special_token_45|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128051": {
|
420 |
+
"content": "<|reserved_special_token_46|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128052": {
|
428 |
+
"content": "<|reserved_special_token_47|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128053": {
|
436 |
+
"content": "<|reserved_special_token_48|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128054": {
|
444 |
+
"content": "<|reserved_special_token_49|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128055": {
|
452 |
+
"content": "<|reserved_special_token_50|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128056": {
|
460 |
+
"content": "<|reserved_special_token_51|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128057": {
|
468 |
+
"content": "<|reserved_special_token_52|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128058": {
|
476 |
+
"content": "<|reserved_special_token_53|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128059": {
|
484 |
+
"content": "<|reserved_special_token_54|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128060": {
|
492 |
+
"content": "<|reserved_special_token_55|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128061": {
|
500 |
+
"content": "<|reserved_special_token_56|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128062": {
|
508 |
+
"content": "<|reserved_special_token_57|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128063": {
|
516 |
+
"content": "<|reserved_special_token_58|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128064": {
|
524 |
+
"content": "<|reserved_special_token_59|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128065": {
|
532 |
+
"content": "<|reserved_special_token_60|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128066": {
|
540 |
+
"content": "<|reserved_special_token_61|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128067": {
|
548 |
+
"content": "<|reserved_special_token_62|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128068": {
|
556 |
+
"content": "<|reserved_special_token_63|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128069": {
|
564 |
+
"content": "<|reserved_special_token_64|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128070": {
|
572 |
+
"content": "<|reserved_special_token_65|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128071": {
|
580 |
+
"content": "<|reserved_special_token_66|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128072": {
|
588 |
+
"content": "<|reserved_special_token_67|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128073": {
|
596 |
+
"content": "<|reserved_special_token_68|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128074": {
|
604 |
+
"content": "<|reserved_special_token_69|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128075": {
|
612 |
+
"content": "<|reserved_special_token_70|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128076": {
|
620 |
+
"content": "<|reserved_special_token_71|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128077": {
|
628 |
+
"content": "<|reserved_special_token_72|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128078": {
|
636 |
+
"content": "<|reserved_special_token_73|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128079": {
|
644 |
+
"content": "<|reserved_special_token_74|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128080": {
|
652 |
+
"content": "<|reserved_special_token_75|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128081": {
|
660 |
+
"content": "<|reserved_special_token_76|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128082": {
|
668 |
+
"content": "<|reserved_special_token_77|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128083": {
|
676 |
+
"content": "<|reserved_special_token_78|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128084": {
|
684 |
+
"content": "<|reserved_special_token_79|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128085": {
|
692 |
+
"content": "<|reserved_special_token_80|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128086": {
|
700 |
+
"content": "<|reserved_special_token_81|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128087": {
|
708 |
+
"content": "<|reserved_special_token_82|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128088": {
|
716 |
+
"content": "<|reserved_special_token_83|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128089": {
|
724 |
+
"content": "<|reserved_special_token_84|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128090": {
|
732 |
+
"content": "<|reserved_special_token_85|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128091": {
|
740 |
+
"content": "<|reserved_special_token_86|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128092": {
|
748 |
+
"content": "<|reserved_special_token_87|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128093": {
|
756 |
+
"content": "<|reserved_special_token_88|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128094": {
|
764 |
+
"content": "<|reserved_special_token_89|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128095": {
|
772 |
+
"content": "<|reserved_special_token_90|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128096": {
|
780 |
+
"content": "<|reserved_special_token_91|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128097": {
|
788 |
+
"content": "<|reserved_special_token_92|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128098": {
|
796 |
+
"content": "<|reserved_special_token_93|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128099": {
|
804 |
+
"content": "<|reserved_special_token_94|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128100": {
|
812 |
+
"content": "<|reserved_special_token_95|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128101": {
|
820 |
+
"content": "<|reserved_special_token_96|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128102": {
|
828 |
+
"content": "<|reserved_special_token_97|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128103": {
|
836 |
+
"content": "<|reserved_special_token_98|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128104": {
|
844 |
+
"content": "<|reserved_special_token_99|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128105": {
|
852 |
+
"content": "<|reserved_special_token_100|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128106": {
|
860 |
+
"content": "<|reserved_special_token_101|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128107": {
|
868 |
+
"content": "<|reserved_special_token_102|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128108": {
|
876 |
+
"content": "<|reserved_special_token_103|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128109": {
|
884 |
+
"content": "<|reserved_special_token_104|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128110": {
|
892 |
+
"content": "<|reserved_special_token_105|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128111": {
|
900 |
+
"content": "<|reserved_special_token_106|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128112": {
|
908 |
+
"content": "<|reserved_special_token_107|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128113": {
|
916 |
+
"content": "<|reserved_special_token_108|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128114": {
|
924 |
+
"content": "<|reserved_special_token_109|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128115": {
|
932 |
+
"content": "<|reserved_special_token_110|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128116": {
|
940 |
+
"content": "<|reserved_special_token_111|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128117": {
|
948 |
+
"content": "<|reserved_special_token_112|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128118": {
|
956 |
+
"content": "<|reserved_special_token_113|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128119": {
|
964 |
+
"content": "<|reserved_special_token_114|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128120": {
|
972 |
+
"content": "<|reserved_special_token_115|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128121": {
|
980 |
+
"content": "<|reserved_special_token_116|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128122": {
|
988 |
+
"content": "<|reserved_special_token_117|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128123": {
|
996 |
+
"content": "<|reserved_special_token_118|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128124": {
|
1004 |
+
"content": "<|reserved_special_token_119|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128125": {
|
1012 |
+
"content": "<|reserved_special_token_120|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128126": {
|
1020 |
+
"content": "<|reserved_special_token_121|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128127": {
|
1028 |
+
"content": "<|reserved_special_token_122|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128128": {
|
1036 |
+
"content": "<|reserved_special_token_123|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128129": {
|
1044 |
+
"content": "<|reserved_special_token_124|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128130": {
|
1052 |
+
"content": "<|reserved_special_token_125|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128131": {
|
1060 |
+
"content": "<|reserved_special_token_126|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128132": {
|
1068 |
+
"content": "<|reserved_special_token_127|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128133": {
|
1076 |
+
"content": "<|reserved_special_token_128|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128134": {
|
1084 |
+
"content": "<|reserved_special_token_129|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128135": {
|
1092 |
+
"content": "<|reserved_special_token_130|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128136": {
|
1100 |
+
"content": "<|reserved_special_token_131|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128137": {
|
1108 |
+
"content": "<|reserved_special_token_132|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128138": {
|
1116 |
+
"content": "<|reserved_special_token_133|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128139": {
|
1124 |
+
"content": "<|reserved_special_token_134|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128140": {
|
1132 |
+
"content": "<|reserved_special_token_135|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128141": {
|
1140 |
+
"content": "<|reserved_special_token_136|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128142": {
|
1148 |
+
"content": "<|reserved_special_token_137|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128143": {
|
1156 |
+
"content": "<|reserved_special_token_138|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128144": {
|
1164 |
+
"content": "<|reserved_special_token_139|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128145": {
|
1172 |
+
"content": "<|reserved_special_token_140|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128146": {
|
1180 |
+
"content": "<|reserved_special_token_141|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128147": {
|
1188 |
+
"content": "<|reserved_special_token_142|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128148": {
|
1196 |
+
"content": "<|reserved_special_token_143|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128149": {
|
1204 |
+
"content": "<|reserved_special_token_144|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128150": {
|
1212 |
+
"content": "<|reserved_special_token_145|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128151": {
|
1220 |
+
"content": "<|reserved_special_token_146|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128152": {
|
1228 |
+
"content": "<|reserved_special_token_147|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128153": {
|
1236 |
+
"content": "<|reserved_special_token_148|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128154": {
|
1244 |
+
"content": "<|reserved_special_token_149|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128155": {
|
1252 |
+
"content": "<|reserved_special_token_150|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128156": {
|
1260 |
+
"content": "<|reserved_special_token_151|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128157": {
|
1268 |
+
"content": "<|reserved_special_token_152|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128158": {
|
1276 |
+
"content": "<|reserved_special_token_153|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128159": {
|
1284 |
+
"content": "<|reserved_special_token_154|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128160": {
|
1292 |
+
"content": "<|reserved_special_token_155|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128161": {
|
1300 |
+
"content": "<|reserved_special_token_156|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128162": {
|
1308 |
+
"content": "<|reserved_special_token_157|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128163": {
|
1316 |
+
"content": "<|reserved_special_token_158|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128164": {
|
1324 |
+
"content": "<|reserved_special_token_159|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128165": {
|
1332 |
+
"content": "<|reserved_special_token_160|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128166": {
|
1340 |
+
"content": "<|reserved_special_token_161|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128167": {
|
1348 |
+
"content": "<|reserved_special_token_162|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128168": {
|
1356 |
+
"content": "<|reserved_special_token_163|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128169": {
|
1364 |
+
"content": "<|reserved_special_token_164|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128170": {
|
1372 |
+
"content": "<|reserved_special_token_165|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128171": {
|
1380 |
+
"content": "<|reserved_special_token_166|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128172": {
|
1388 |
+
"content": "<|reserved_special_token_167|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128173": {
|
1396 |
+
"content": "<|reserved_special_token_168|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128174": {
|
1404 |
+
"content": "<|reserved_special_token_169|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128175": {
|
1412 |
+
"content": "<|reserved_special_token_170|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128176": {
|
1420 |
+
"content": "<|reserved_special_token_171|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128177": {
|
1428 |
+
"content": "<|reserved_special_token_172|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128178": {
|
1436 |
+
"content": "<|reserved_special_token_173|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128179": {
|
1444 |
+
"content": "<|reserved_special_token_174|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128180": {
|
1452 |
+
"content": "<|reserved_special_token_175|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128181": {
|
1460 |
+
"content": "<|reserved_special_token_176|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128182": {
|
1468 |
+
"content": "<|reserved_special_token_177|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128183": {
|
1476 |
+
"content": "<|reserved_special_token_178|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128184": {
|
1484 |
+
"content": "<|reserved_special_token_179|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128185": {
|
1492 |
+
"content": "<|reserved_special_token_180|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128186": {
|
1500 |
+
"content": "<|reserved_special_token_181|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128187": {
|
1508 |
+
"content": "<|reserved_special_token_182|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128188": {
|
1516 |
+
"content": "<|reserved_special_token_183|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128189": {
|
1524 |
+
"content": "<|reserved_special_token_184|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128190": {
|
1532 |
+
"content": "<|reserved_special_token_185|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128191": {
|
1540 |
+
"content": "<|reserved_special_token_186|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128192": {
|
1548 |
+
"content": "<|reserved_special_token_187|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128193": {
|
1556 |
+
"content": "<|reserved_special_token_188|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128194": {
|
1564 |
+
"content": "<|reserved_special_token_189|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128195": {
|
1572 |
+
"content": "<|reserved_special_token_190|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128196": {
|
1580 |
+
"content": "<|reserved_special_token_191|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128197": {
|
1588 |
+
"content": "<|reserved_special_token_192|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128198": {
|
1596 |
+
"content": "<|reserved_special_token_193|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128199": {
|
1604 |
+
"content": "<|reserved_special_token_194|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128200": {
|
1612 |
+
"content": "<|reserved_special_token_195|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128201": {
|
1620 |
+
"content": "<|reserved_special_token_196|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128202": {
|
1628 |
+
"content": "<|reserved_special_token_197|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128203": {
|
1636 |
+
"content": "<|reserved_special_token_198|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128204": {
|
1644 |
+
"content": "<|reserved_special_token_199|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128205": {
|
1652 |
+
"content": "<|reserved_special_token_200|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128206": {
|
1660 |
+
"content": "<|reserved_special_token_201|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128207": {
|
1668 |
+
"content": "<|reserved_special_token_202|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128208": {
|
1676 |
+
"content": "<|reserved_special_token_203|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128209": {
|
1684 |
+
"content": "<|reserved_special_token_204|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128210": {
|
1692 |
+
"content": "<|reserved_special_token_205|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128211": {
|
1700 |
+
"content": "<|reserved_special_token_206|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128212": {
|
1708 |
+
"content": "<|reserved_special_token_207|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128213": {
|
1716 |
+
"content": "<|reserved_special_token_208|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128214": {
|
1724 |
+
"content": "<|reserved_special_token_209|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128215": {
|
1732 |
+
"content": "<|reserved_special_token_210|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128216": {
|
1740 |
+
"content": "<|reserved_special_token_211|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128217": {
|
1748 |
+
"content": "<|reserved_special_token_212|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128218": {
|
1756 |
+
"content": "<|reserved_special_token_213|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128219": {
|
1764 |
+
"content": "<|reserved_special_token_214|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128220": {
|
1772 |
+
"content": "<|reserved_special_token_215|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128221": {
|
1780 |
+
"content": "<|reserved_special_token_216|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128222": {
|
1788 |
+
"content": "<|reserved_special_token_217|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128223": {
|
1796 |
+
"content": "<|reserved_special_token_218|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128224": {
|
1804 |
+
"content": "<|reserved_special_token_219|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128225": {
|
1812 |
+
"content": "<|reserved_special_token_220|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128226": {
|
1820 |
+
"content": "<|reserved_special_token_221|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128227": {
|
1828 |
+
"content": "<|reserved_special_token_222|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128228": {
|
1836 |
+
"content": "<|reserved_special_token_223|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128229": {
|
1844 |
+
"content": "<|reserved_special_token_224|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128230": {
|
1852 |
+
"content": "<|reserved_special_token_225|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128231": {
|
1860 |
+
"content": "<|reserved_special_token_226|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128232": {
|
1868 |
+
"content": "<|reserved_special_token_227|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128233": {
|
1876 |
+
"content": "<|reserved_special_token_228|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128234": {
|
1884 |
+
"content": "<|reserved_special_token_229|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128235": {
|
1892 |
+
"content": "<|reserved_special_token_230|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128236": {
|
1900 |
+
"content": "<|reserved_special_token_231|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128237": {
|
1908 |
+
"content": "<|reserved_special_token_232|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128238": {
|
1916 |
+
"content": "<|reserved_special_token_233|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128239": {
|
1924 |
+
"content": "<|reserved_special_token_234|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128240": {
|
1932 |
+
"content": "<|reserved_special_token_235|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128241": {
|
1940 |
+
"content": "<|reserved_special_token_236|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128242": {
|
1948 |
+
"content": "<|reserved_special_token_237|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128243": {
|
1956 |
+
"content": "<|reserved_special_token_238|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128244": {
|
1964 |
+
"content": "<|reserved_special_token_239|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128245": {
|
1972 |
+
"content": "<|reserved_special_token_240|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128246": {
|
1980 |
+
"content": "<|reserved_special_token_241|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128247": {
|
1988 |
+
"content": "<|reserved_special_token_242|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128248": {
|
1996 |
+
"content": "<|reserved_special_token_243|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128249": {
|
2004 |
+
"content": "<|reserved_special_token_244|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128250": {
|
2012 |
+
"content": "<|reserved_special_token_245|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128251": {
|
2020 |
+
"content": "<|reserved_special_token_246|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128252": {
|
2028 |
+
"content": "<|reserved_special_token_247|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128253": {
|
2036 |
+
"content": "<|reserved_special_token_248|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128254": {
|
2044 |
+
"content": "<|reserved_special_token_249|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128255": {
|
2052 |
+
"content": "<|reserved_special_token_250|>",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
},
|
2059 |
+
"128256": {
|
2060 |
+
"content": "<pad>",
|
2061 |
+
"lstrip": false,
|
2062 |
+
"normalized": false,
|
2063 |
+
"rstrip": false,
|
2064 |
+
"single_word": false,
|
2065 |
+
"special": true
|
2066 |
+
}
|
2067 |
+
},
|
2068 |
+
"bos_token": "<|begin_of_text|>",
|
2069 |
+
"clean_up_tokenization_spaces": true,
|
2070 |
+
"eos_token": "<|end_of_text|>",
|
2071 |
+
"model_input_names": [
|
2072 |
+
"input_ids",
|
2073 |
+
"attention_mask"
|
2074 |
+
],
|
2075 |
+
"model_max_length": 2048,
|
2076 |
+
"pad_token": "<pad>",
|
2077 |
+
"padding_side": "right",
|
2078 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2079 |
+
}
|