ZaneHorrible
commited on
Commit
•
63eaedb
1
Parent(s):
10b7c3c
Model save
Browse files- README.md +161 -0
- config.json +76 -0
- model.safetensors +3 -0
- preprocessor_config.json +36 -0
- runs/May30_05-43-38_1cc5b958424b/events.out.tfevents.1717047819.1cc5b958424b.34.0 +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-large-patch32-384
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: ViTL-32-384-1e4-batch_16_epoch_4_classes_24
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9755747126436781
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# ViTL-32-384-1e4-batch_16_epoch_4_classes_24
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [google/vit-large-patch32-384](https://huggingface.co/google/vit-large-patch32-384) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.1157
|
36 |
+
- Accuracy: 0.9756
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0001
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 3
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.3336 | 0.03 | 100 | 0.2980 | 0.9325 |
|
69 |
+
| 0.0235 | 0.07 | 200 | 0.1580 | 0.9612 |
|
70 |
+
| 0.0381 | 0.1 | 300 | 0.2212 | 0.9540 |
|
71 |
+
| 0.0507 | 0.14 | 400 | 0.4664 | 0.9037 |
|
72 |
+
| 0.0052 | 0.17 | 500 | 0.1737 | 0.9670 |
|
73 |
+
| 0.0499 | 0.21 | 600 | 0.2187 | 0.9511 |
|
74 |
+
| 0.0454 | 0.24 | 700 | 0.1837 | 0.9569 |
|
75 |
+
| 0.0317 | 0.28 | 800 | 0.2616 | 0.9497 |
|
76 |
+
| 0.0594 | 0.31 | 900 | 0.1867 | 0.9555 |
|
77 |
+
| 0.0583 | 0.35 | 1000 | 0.1817 | 0.9569 |
|
78 |
+
| 0.0044 | 0.38 | 1100 | 0.2358 | 0.9497 |
|
79 |
+
| 0.0836 | 0.42 | 1200 | 0.2422 | 0.9454 |
|
80 |
+
| 0.0712 | 0.45 | 1300 | 0.1943 | 0.9555 |
|
81 |
+
| 0.0399 | 0.49 | 1400 | 0.2922 | 0.9440 |
|
82 |
+
| 0.0098 | 0.52 | 1500 | 0.3783 | 0.9325 |
|
83 |
+
| 0.0414 | 0.56 | 1600 | 0.2583 | 0.9454 |
|
84 |
+
| 0.1085 | 0.59 | 1700 | 0.2241 | 0.9511 |
|
85 |
+
| 0.0492 | 0.63 | 1800 | 0.2813 | 0.9368 |
|
86 |
+
| 0.044 | 0.66 | 1900 | 0.3361 | 0.9353 |
|
87 |
+
| 0.0344 | 0.7 | 2000 | 0.2549 | 0.9468 |
|
88 |
+
| 0.002 | 0.73 | 2100 | 0.1794 | 0.9641 |
|
89 |
+
| 0.0731 | 0.77 | 2200 | 0.2300 | 0.9540 |
|
90 |
+
| 0.0151 | 0.8 | 2300 | 0.2050 | 0.9569 |
|
91 |
+
| 0.0031 | 0.84 | 2400 | 0.2175 | 0.9454 |
|
92 |
+
| 0.1015 | 0.87 | 2500 | 0.1725 | 0.9626 |
|
93 |
+
| 0.0383 | 0.91 | 2600 | 0.2104 | 0.9540 |
|
94 |
+
| 0.0926 | 0.94 | 2700 | 0.1762 | 0.9540 |
|
95 |
+
| 0.0001 | 0.98 | 2800 | 0.1978 | 0.9612 |
|
96 |
+
| 0.1365 | 1.01 | 2900 | 0.1512 | 0.9655 |
|
97 |
+
| 0.083 | 1.04 | 3000 | 0.1298 | 0.9641 |
|
98 |
+
| 0.0002 | 1.08 | 3100 | 0.1976 | 0.9540 |
|
99 |
+
| 0.0042 | 1.11 | 3200 | 0.1719 | 0.9698 |
|
100 |
+
| 0.0002 | 1.15 | 3300 | 0.1924 | 0.9583 |
|
101 |
+
| 0.0002 | 1.18 | 3400 | 0.1732 | 0.9626 |
|
102 |
+
| 0.0978 | 1.22 | 3500 | 0.1902 | 0.9612 |
|
103 |
+
| 0.1067 | 1.25 | 3600 | 0.1868 | 0.9612 |
|
104 |
+
| 0.0005 | 1.29 | 3700 | 0.2166 | 0.9468 |
|
105 |
+
| 0.0007 | 1.32 | 3800 | 0.2293 | 0.9425 |
|
106 |
+
| 0.0001 | 1.36 | 3900 | 0.2296 | 0.9626 |
|
107 |
+
| 0.0001 | 1.39 | 4000 | 0.1685 | 0.9684 |
|
108 |
+
| 0.0001 | 1.43 | 4100 | 0.2106 | 0.9655 |
|
109 |
+
| 0.0004 | 1.46 | 4200 | 0.1614 | 0.9670 |
|
110 |
+
| 0.0 | 1.5 | 4300 | 0.1311 | 0.9727 |
|
111 |
+
| 0.0 | 1.53 | 4400 | 0.1445 | 0.9784 |
|
112 |
+
| 0.0433 | 1.57 | 4500 | 0.1544 | 0.9727 |
|
113 |
+
| 0.0263 | 1.6 | 4600 | 0.2133 | 0.9626 |
|
114 |
+
| 0.0 | 1.64 | 4700 | 0.1903 | 0.9598 |
|
115 |
+
| 0.0 | 1.67 | 4800 | 0.1587 | 0.9583 |
|
116 |
+
| 0.0 | 1.71 | 4900 | 0.1817 | 0.9655 |
|
117 |
+
| 0.1503 | 1.74 | 5000 | 0.2346 | 0.9526 |
|
118 |
+
| 0.0699 | 1.78 | 5100 | 0.1143 | 0.9713 |
|
119 |
+
| 0.0004 | 1.81 | 5200 | 0.1937 | 0.9626 |
|
120 |
+
| 0.0001 | 1.85 | 5300 | 0.2660 | 0.9540 |
|
121 |
+
| 0.2208 | 1.88 | 5400 | 0.1500 | 0.9713 |
|
122 |
+
| 0.0494 | 1.92 | 5500 | 0.1203 | 0.9698 |
|
123 |
+
| 0.0001 | 1.95 | 5600 | 0.1231 | 0.9756 |
|
124 |
+
| 0.0001 | 1.99 | 5700 | 0.1254 | 0.9698 |
|
125 |
+
| 0.0 | 2.02 | 5800 | 0.1622 | 0.9684 |
|
126 |
+
| 0.0001 | 2.06 | 5900 | 0.1464 | 0.9698 |
|
127 |
+
| 0.0 | 2.09 | 6000 | 0.1420 | 0.9698 |
|
128 |
+
| 0.0 | 2.12 | 6100 | 0.1416 | 0.9698 |
|
129 |
+
| 0.0 | 2.16 | 6200 | 0.1408 | 0.9698 |
|
130 |
+
| 0.0001 | 2.19 | 6300 | 0.1402 | 0.9698 |
|
131 |
+
| 0.0147 | 2.23 | 6400 | 0.1536 | 0.9655 |
|
132 |
+
| 0.0 | 2.26 | 6500 | 0.1944 | 0.9612 |
|
133 |
+
| 0.0 | 2.3 | 6600 | 0.1724 | 0.9684 |
|
134 |
+
| 0.0003 | 2.33 | 6700 | 0.1910 | 0.9612 |
|
135 |
+
| 0.0003 | 2.37 | 6800 | 0.1995 | 0.9626 |
|
136 |
+
| 0.0004 | 2.4 | 6900 | 0.1563 | 0.9655 |
|
137 |
+
| 0.0 | 2.44 | 7000 | 0.1460 | 0.9727 |
|
138 |
+
| 0.0 | 2.47 | 7100 | 0.1434 | 0.9727 |
|
139 |
+
| 0.0 | 2.51 | 7200 | 0.1242 | 0.9741 |
|
140 |
+
| 0.0041 | 2.54 | 7300 | 0.1364 | 0.9713 |
|
141 |
+
| 0.0 | 2.58 | 7400 | 0.1396 | 0.9684 |
|
142 |
+
| 0.0 | 2.61 | 7500 | 0.1371 | 0.9655 |
|
143 |
+
| 0.0 | 2.65 | 7600 | 0.1373 | 0.9684 |
|
144 |
+
| 0.0 | 2.68 | 7700 | 0.1230 | 0.9698 |
|
145 |
+
| 0.0 | 2.72 | 7800 | 0.1225 | 0.9698 |
|
146 |
+
| 0.0 | 2.75 | 7900 | 0.1223 | 0.9698 |
|
147 |
+
| 0.0001 | 2.79 | 8000 | 0.1218 | 0.9698 |
|
148 |
+
| 0.0 | 2.82 | 8100 | 0.1186 | 0.9756 |
|
149 |
+
| 0.0 | 2.86 | 8200 | 0.1183 | 0.9756 |
|
150 |
+
| 0.0 | 2.89 | 8300 | 0.1167 | 0.9756 |
|
151 |
+
| 0.0 | 2.93 | 8400 | 0.1163 | 0.9756 |
|
152 |
+
| 0.0 | 2.96 | 8500 | 0.1162 | 0.9756 |
|
153 |
+
| 0.0 | 3.0 | 8600 | 0.1157 | 0.9756 |
|
154 |
+
|
155 |
+
|
156 |
+
### Framework versions
|
157 |
+
|
158 |
+
- Transformers 4.39.3
|
159 |
+
- Pytorch 2.1.2
|
160 |
+
- Datasets 2.18.0
|
161 |
+
- Tokenizers 0.15.2
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/vit-large-patch32-384",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"id2label": {
|
12 |
+
"0": "Bhapa Pitha(\u09ad\u09be\u09aa\u09be \u09aa\u09bf\u09a0\u09be)",
|
13 |
+
"1": "Biriyani(\u09ac\u09bf\u09b0\u09bf\u09df\u09be\u09a8\u09bf)",
|
14 |
+
"10": "Khichuri(\u0996\u09bf\u099a\u09c1\u09a1\u09bc\u09bf)",
|
15 |
+
"11": "Malpua Pitha(\u09ae\u09be\u09b2\u09aa\u09c1\u09df\u09be \u09aa\u09bf\u09a0\u09be)",
|
16 |
+
"12": "Mustard Hilsa(\u09b8\u09b0\u09b7\u09c7 \u0987\u09b2\u09bf\u09b6)",
|
17 |
+
"13": "Nakshi Pitha(\u09a8\u0995\u09b6\u09bf \u09aa\u09bf\u09a0\u09be)",
|
18 |
+
"14": "Panta Ilish(\u09aa\u09be\u09a8\u09cd\u09a4\u09be \u0987\u09b2\u09bf\u09b6)",
|
19 |
+
"15": "Patishapta Pitha(\u09aa\u09be\u099f\u09bf\u09b8\u09be\u09aa\u099f\u09be)",
|
20 |
+
"16": "Prawn Malai Curry(\u099a\u09bf\u0982\u09dc\u09bf \u09ae\u09be\u09b2\u09be\u0987\u0995\u09be\u09b0\u09c0)",
|
21 |
+
"17": "Rasgulla(\u09b0\u09b8\u0997\u09cb\u09b2\u09cd\u09b2\u09be)",
|
22 |
+
"18": "Rose Cookies(\u09ab\u09c1\u09b2\u099d\u09c1\u09b0\u09bf \u09aa\u09bf\u09a0\u09be)",
|
23 |
+
"19": "Roshmalai(\u09b0\u09b8\u09ae\u09be\u09b2\u09be\u0987)",
|
24 |
+
"2": "Chicken Pulao(\u09ae\u09cb\u09b0\u0997 \u09aa\u09cb\u09b2\u09be\u0993)",
|
25 |
+
"20": "Shahi Tukra(\u09b6\u09be\u09b9\u09bf \u099f\u09c1\u0995\u09b0\u09be)",
|
26 |
+
"21": "Shingara(\u09b8\u09bf\u0999\u09cd\u0997\u09be\u09b0\u09be)",
|
27 |
+
"22": "Sweet Yogurt(\u09ae\u09bf\u09b7\u09cd\u099f\u09bf \u09a6\u0987)",
|
28 |
+
"23": "Tehari(\u09a4\u09c7\u09b9\u09be\u09b0\u09bf)",
|
29 |
+
"3": "Chickpease Bhuna(\u099b\u09cb\u09b2\u09be\u09ad\u09c1\u09a8\u09be)",
|
30 |
+
"4": "Egg Curry(\u09a1\u09bf\u09ae\u09ad\u09c1\u09a8\u09be)",
|
31 |
+
"5": "Falooda(\u09ab\u09be\u09b2\u09c1\u09a6\u09be)",
|
32 |
+
"6": "Fuchka(\u09ab\u09c1\u099a\u0995\u09be)",
|
33 |
+
"7": "Haleem(\u09b9\u09be\u09b2\u09bf\u09ae)",
|
34 |
+
"8": "Jalebi(\u099c\u09bf\u09b2\u09be\u09aa\u09c0)",
|
35 |
+
"9": "Kala Bhuna(\u0995\u09be\u09b2\u09be \u09ad\u09c1\u09a8\u09be)"
|
36 |
+
},
|
37 |
+
"image_size": 384,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"intermediate_size": 4096,
|
40 |
+
"label2id": {
|
41 |
+
"Bhapa Pitha(\u09ad\u09be\u09aa\u09be \u09aa\u09bf\u09a0\u09be)": "0",
|
42 |
+
"Biriyani(\u09ac\u09bf\u09b0\u09bf\u09df\u09be\u09a8\u09bf)": "1",
|
43 |
+
"Chicken Pulao(\u09ae\u09cb\u09b0\u0997 \u09aa\u09cb\u09b2\u09be\u0993)": "2",
|
44 |
+
"Chickpease Bhuna(\u099b\u09cb\u09b2\u09be\u09ad\u09c1\u09a8\u09be)": "3",
|
45 |
+
"Egg Curry(\u09a1\u09bf\u09ae\u09ad\u09c1\u09a8\u09be)": "4",
|
46 |
+
"Falooda(\u09ab\u09be\u09b2\u09c1\u09a6\u09be)": "5",
|
47 |
+
"Fuchka(\u09ab\u09c1\u099a\u0995\u09be)": "6",
|
48 |
+
"Haleem(\u09b9\u09be\u09b2\u09bf\u09ae)": "7",
|
49 |
+
"Jalebi(\u099c\u09bf\u09b2\u09be\u09aa\u09c0)": "8",
|
50 |
+
"Kala Bhuna(\u0995\u09be\u09b2\u09be \u09ad\u09c1\u09a8\u09be)": "9",
|
51 |
+
"Khichuri(\u0996\u09bf\u099a\u09c1\u09a1\u09bc\u09bf)": "10",
|
52 |
+
"Malpua Pitha(\u09ae\u09be\u09b2\u09aa\u09c1\u09df\u09be \u09aa\u09bf\u09a0\u09be)": "11",
|
53 |
+
"Mustard Hilsa(\u09b8\u09b0\u09b7\u09c7 \u0987\u09b2\u09bf\u09b6)": "12",
|
54 |
+
"Nakshi Pitha(\u09a8\u0995\u09b6\u09bf \u09aa\u09bf\u09a0\u09be)": "13",
|
55 |
+
"Panta Ilish(\u09aa\u09be\u09a8\u09cd\u09a4\u09be \u0987\u09b2\u09bf\u09b6)": "14",
|
56 |
+
"Patishapta Pitha(\u09aa\u09be\u099f\u09bf\u09b8\u09be\u09aa\u099f\u09be)": "15",
|
57 |
+
"Prawn Malai Curry(\u099a\u09bf\u0982\u09dc\u09bf \u09ae\u09be\u09b2\u09be\u0987\u0995\u09be\u09b0\u09c0)": "16",
|
58 |
+
"Rasgulla(\u09b0\u09b8\u0997\u09cb\u09b2\u09cd\u09b2\u09be)": "17",
|
59 |
+
"Rose Cookies(\u09ab\u09c1\u09b2\u099d\u09c1\u09b0\u09bf \u09aa\u09bf\u09a0\u09be)": "18",
|
60 |
+
"Roshmalai(\u09b0\u09b8\u09ae\u09be\u09b2\u09be\u0987)": "19",
|
61 |
+
"Shahi Tukra(\u09b6\u09be\u09b9\u09bf \u099f\u09c1\u0995\u09b0\u09be)": "20",
|
62 |
+
"Shingara(\u09b8\u09bf\u0999\u09cd\u0997\u09be\u09b0\u09be)": "21",
|
63 |
+
"Sweet Yogurt(\u09ae\u09bf\u09b7\u09cd\u099f\u09bf \u09a6\u0987)": "22",
|
64 |
+
"Tehari(\u09a4\u09c7\u09b9\u09be\u09b0\u09bf)": "23"
|
65 |
+
},
|
66 |
+
"layer_norm_eps": 1e-12,
|
67 |
+
"model_type": "vit",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_channels": 3,
|
70 |
+
"num_hidden_layers": 24,
|
71 |
+
"patch_size": 32,
|
72 |
+
"problem_type": "single_label_classification",
|
73 |
+
"qkv_bias": true,
|
74 |
+
"torch_dtype": "float32",
|
75 |
+
"transformers_version": "4.39.3"
|
76 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b12658cf51dda578ff486c919747e981a01530b305983df0cae5240373385d0
|
3 |
+
size 1222575688
|
preprocessor_config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"do_rescale",
|
8 |
+
"rescale_factor",
|
9 |
+
"do_normalize",
|
10 |
+
"image_mean",
|
11 |
+
"image_std",
|
12 |
+
"return_tensors",
|
13 |
+
"data_format",
|
14 |
+
"input_data_format"
|
15 |
+
],
|
16 |
+
"do_normalize": true,
|
17 |
+
"do_rescale": true,
|
18 |
+
"do_resize": true,
|
19 |
+
"image_mean": [
|
20 |
+
0.5,
|
21 |
+
0.5,
|
22 |
+
0.5
|
23 |
+
],
|
24 |
+
"image_processor_type": "ViTFeatureExtractor",
|
25 |
+
"image_std": [
|
26 |
+
0.5,
|
27 |
+
0.5,
|
28 |
+
0.5
|
29 |
+
],
|
30 |
+
"resample": 2,
|
31 |
+
"rescale_factor": 0.00392156862745098,
|
32 |
+
"size": {
|
33 |
+
"height": 384,
|
34 |
+
"width": 384
|
35 |
+
}
|
36 |
+
}
|
runs/May30_05-43-38_1cc5b958424b/events.out.tfevents.1717047819.1cc5b958424b.34.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1453fcf43f14455949c5f43352d10d276f11065ff906a8f90a7ed473b1188b3
|
3 |
+
size 285213
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56e82c20724d089fee86a5504f5076e576aefcec857be40bd9ea8585bcc7e100
|
3 |
+
size 4984
|