YvanRLD commited on
Commit
4144afc
1 Parent(s): d892f47

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -29
README.md CHANGED
@@ -58,29 +58,29 @@ pip install tensorflow pillow matplotlib numpy
58
 
59
  To load and use the model for predictions:
60
 
61
- '''python
62
- import tensorflow as tf
63
- from PIL import Image
64
- import numpy as np
65
- '''
66
- # Load the model
67
- model = tf.keras.models.load_model("path_to_model.h5")
68
-
69
- # Prepare an image for prediction
70
- def prepare_image(image_path):
71
- img = Image.open(image_path).convert("RGB")
72
- img = img.resize((224, 224))
73
- img_array = tf.keras.preprocessing.image.img_to_array(img)
74
- img_array = np.expand_dims(img_array, axis=0)
75
- return img_array
76
-
77
- # Prediction
78
- image_path = "path_to_image.jpg"
79
- img_array = prepare_image(image_path)
80
- predictions = model.predict(img_array)
81
- predicted_class = np.argmax(predictions[0])
82
-
83
- print(f"Predicted Class: {predicted_class}")
84
 
85
 
86
  ### Grad-CAM Visualization
@@ -89,13 +89,13 @@ The integrated *Grad-CAM* functionality allows interpretation of the model's pre
89
 
90
  Grad-CAM example usage:
91
 
92
- python
93
- # Example usage of the make_gradcam_heatmap function
94
- heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name="last_conv_layer_name")
95
 
96
- # Superimpose the heatmap on the original image
97
- superimposed_img = superimpose_heatmap(Image.open(image_path), heatmap)
98
- superimposed_img.show()
99
 
100
 
101
  ## Evaluation
 
58
 
59
  To load and use the model for predictions:
60
 
61
+ python
62
+ import tensorflow as tf
63
+ from PIL import Image
64
+ import numpy as np
65
+
66
+ # Load the model
67
+ model = tf.keras.models.load_model("path_to_model.h5")
68
+
69
+ # Prepare an image for prediction
70
+ def prepare_image(image_path):
71
+ img = Image.open(image_path).convert("RGB")
72
+ img = img.resize((224, 224))
73
+ img_array = tf.keras.preprocessing.image.img_to_array(img)
74
+ img_array = np.expand_dims(img_array, axis=0)
75
+ return img_array
76
+
77
+ # Prediction
78
+ image_path = "path_to_image.jpg"
79
+ img_array = prepare_image(image_path)
80
+ predictions = model.predict(img_array)
81
+ predicted_class = np.argmax(predictions[0])
82
+
83
+ print(f"Predicted Class: {predicted_class}")
84
 
85
 
86
  ### Grad-CAM Visualization
 
89
 
90
  Grad-CAM example usage:
91
 
92
+ python
93
+ # Example usage of the make_gradcam_heatmap function
94
+ heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name="last_conv_layer_name")
95
 
96
+ # Superimpose the heatmap on the original image
97
+ superimposed_img = superimpose_heatmap(Image.open(image_path), heatmap)
98
+ superimposed_img.show()
99
 
100
 
101
  ## Evaluation