Update README.md
Browse files
README.md
CHANGED
@@ -231,19 +231,30 @@ with open(f"{os.path.dirname(os.path.abspath('__file__'))}/workspace/elyza-tasks
|
|
231 |
item = ""
|
232 |
|
233 |
# モデルによるタスクの推論。
|
|
|
234 |
from tqdm import tqdm
|
235 |
|
236 |
results = []
|
|
|
|
|
237 |
|
238 |
for data in tqdm(datasets, smoothing=0.0):
|
239 |
input_text = data["input"]
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
system_prompt = SYSTEM_PROMPT.format(
|
243 |
-
|
244 |
-
dataset_eval_aspect=elyza_tasks_datasets["test"]["eval_aspect"][dataset_index],
|
245 |
-
dataset_answer=elyza_tasks_datasets["test"]["output"][dataset_index],
|
246 |
)
|
|
|
|
|
247 |
|
248 |
output = llm(input_text=input_text,
|
249 |
system_prompt=system_prompt,
|
@@ -251,17 +262,23 @@ for data in tqdm(datasets, smoothing=0.0):
|
|
251 |
repetition_penalty=1.15,
|
252 |
# stream=True,
|
253 |
).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
results.append({
|
255 |
"task_id": data["task_id"],
|
256 |
"input": input_text,
|
257 |
-
"
|
|
|
258 |
"elyza_tasks_id": dataset_index,
|
259 |
-
"dataset_input": elyza_tasks_datasets["test"]["input"][dataset_index],
|
260 |
-
"dataset_eval_aspect": elyza_tasks_datasets["test"]["eval_aspect"][dataset_index],
|
261 |
-
"dataset_answer": elyza_tasks_datasets["test"]["output"][dataset_index],
|
262 |
})
|
263 |
|
264 |
-
|
|
|
|
|
265 |
|
266 |
```
|
267 |
|
|
|
231 |
item = ""
|
232 |
|
233 |
# モデルによるタスクの推論。
|
234 |
+
import re
|
235 |
from tqdm import tqdm
|
236 |
|
237 |
results = []
|
238 |
+
n = 2
|
239 |
+
|
240 |
|
241 |
for data in tqdm(datasets, smoothing=0.0):
|
242 |
input_text = data["input"]
|
243 |
+
dataset_index_list = retrieve(input_text, n)
|
244 |
+
|
245 |
+
examples = ""
|
246 |
+
for dataset_index in dataset_index_list:
|
247 |
+
examples += EXAMPLE_TEMPLATE.format(
|
248 |
+
dataset_input=elyza_tasks_datasets["test"]["input"][dataset_index].strip(),
|
249 |
+
dataset_eval_aspect=elyza_tasks_datasets["test"]["eval_aspect"][dataset_index].strip(),
|
250 |
+
dataset_answer=elyza_tasks_datasets["test"]["output"][dataset_index].strip(),
|
251 |
+
)
|
252 |
|
253 |
system_prompt = SYSTEM_PROMPT.format(
|
254 |
+
examples=examples.strip(),
|
|
|
|
|
255 |
)
|
256 |
+
# print(examples)
|
257 |
+
# print(input_text)
|
258 |
|
259 |
output = llm(input_text=input_text,
|
260 |
system_prompt=system_prompt,
|
|
|
262 |
repetition_penalty=1.15,
|
263 |
# stream=True,
|
264 |
).strip()
|
265 |
+
# print("-----------------------------------------------------------------------------------------------------------------------------------")
|
266 |
+
# print(output.strip())
|
267 |
+
# print("===================================================================================================================================")
|
268 |
+
# print(re.sub(r"^[\s\S]*?### 出力", "", re.sub(r"^[\s\S]*?\*\*出力\*\*:", "", output)).strip())
|
269 |
+
# print("-----------------------------------------------------------------------------------------------------------------------------------")
|
270 |
+
|
271 |
results.append({
|
272 |
"task_id": data["task_id"],
|
273 |
"input": input_text,
|
274 |
+
"output_org": output.strip(),
|
275 |
+
"output": re.sub(r"^[\s\S]*?### 出力", "", output).strip(),
|
276 |
"elyza_tasks_id": dataset_index,
|
|
|
|
|
|
|
277 |
})
|
278 |
|
279 |
+
|
280 |
+
|
281 |
+
# results にタスクの解答が入っている
|
282 |
|
283 |
```
|
284 |
|