|
""" |
|
extract factors the build is dependent on: |
|
[X] compute capability |
|
[ ] TODO: Q - What if we have multiple GPUs of different makes? |
|
- CUDA version |
|
- Software: |
|
- CPU-only: only CPU quantization functions (no optimizer, no matrix multipl) |
|
- CuBLAS-LT: full-build 8-bit optimizer |
|
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`) |
|
|
|
evaluation: |
|
- if paths faulty, return meaningful error |
|
- else: |
|
- determine CUDA version |
|
- determine capabilities |
|
- based on that set the default path |
|
""" |
|
|
|
import ctypes as ct |
|
import os |
|
import errno |
|
import torch |
|
from warnings import warn |
|
|
|
from pathlib import Path |
|
from typing import Set, Union |
|
from .env_vars import get_potentially_lib_path_containing_env_vars |
|
|
|
CUDA_RUNTIME_LIB: str = "libcudart.so" |
|
|
|
class CUDASetup: |
|
_instance = None |
|
|
|
def __init__(self): |
|
raise RuntimeError("Call get_instance() instead") |
|
|
|
def generate_instructions(self): |
|
if self.cuda is None: |
|
self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.') |
|
self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.') |
|
self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:') |
|
self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null') |
|
self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a') |
|
self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc') |
|
return |
|
|
|
if self.cudart_path is None: |
|
self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.') |
|
self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable') |
|
self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null') |
|
self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a') |
|
self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc') |
|
self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.') |
|
self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh') |
|
self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.') |
|
self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local') |
|
return |
|
|
|
make_cmd = f'CUDA_VERSION={self.cuda_version_string}' |
|
if len(self.cuda_version_string) < 3: |
|
make_cmd += ' make cuda92' |
|
elif self.cuda_version_string == '110': |
|
make_cmd += ' make cuda110' |
|
elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0: |
|
make_cmd += ' make cuda11x' |
|
elif self.cuda_version_string == '100': |
|
self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.') |
|
self.add_log_entry('CUDA SETUP: Before you try again running bitsandbytes, make sure old CUDA 10.0 versions are uninstalled and removed from $LD_LIBRARY_PATH variables.') |
|
return |
|
|
|
|
|
has_cublaslt = is_cublasLt_compatible(self.cc) |
|
if not has_cublaslt: |
|
make_cmd += '_nomatmul' |
|
|
|
self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:') |
|
self.add_log_entry('git clone git@github.com:TimDettmers/bitsandbytes.git') |
|
self.add_log_entry('cd bitsandbytes') |
|
self.add_log_entry(make_cmd) |
|
self.add_log_entry('python setup.py install') |
|
|
|
def initialize(self): |
|
if not getattr(self, 'initialized', False): |
|
self.has_printed = False |
|
self.lib = None |
|
self.initialized = False |
|
|
|
def run_cuda_setup(self): |
|
self.initialized = True |
|
self.cuda_setup_log = [] |
|
|
|
binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup() |
|
self.cudart_path = cudart_path |
|
self.cuda = cuda |
|
self.cc = cc |
|
self.cuda_version_string = cuda_version_string |
|
|
|
package_dir = Path(__file__).parent.parent |
|
binary_path = package_dir / binary_name |
|
|
|
try: |
|
if not binary_path.exists(): |
|
self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?") |
|
legacy_binary_name = "libbitsandbytes_cpu.so" |
|
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...") |
|
binary_path = package_dir / legacy_binary_name |
|
if not binary_path.exists() or torch.cuda.is_available(): |
|
self.add_log_entry('') |
|
self.add_log_entry('='*48 + 'ERROR' + '='*37) |
|
self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:') |
|
self.add_log_entry('1. CUDA driver not installed') |
|
self.add_log_entry('2. CUDA not installed') |
|
self.add_log_entry('3. You have multiple conflicting CUDA libraries') |
|
self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!') |
|
self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.') |
|
self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.') |
|
self.add_log_entry('='*80) |
|
self.add_log_entry('') |
|
self.generate_instructions() |
|
self.print_log_stack() |
|
raise Exception('CUDA SETUP: Setup Failed!') |
|
self.lib = ct.cdll.LoadLibrary(str(binary_path)) |
|
else: |
|
self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...") |
|
self.lib = ct.cdll.LoadLibrary(str(binary_path)) |
|
except Exception as ex: |
|
self.add_log_entry(str(ex)) |
|
self.print_log_stack() |
|
|
|
def add_log_entry(self, msg, is_warning=False): |
|
self.cuda_setup_log.append((msg, is_warning)) |
|
|
|
def print_log_stack(self): |
|
for msg, is_warning in self.cuda_setup_log: |
|
if is_warning: |
|
warn(msg) |
|
else: |
|
print(msg) |
|
|
|
@classmethod |
|
def get_instance(cls): |
|
if cls._instance is None: |
|
cls._instance = cls.__new__(cls) |
|
cls._instance.initialize() |
|
return cls._instance |
|
|
|
|
|
def is_cublasLt_compatible(cc): |
|
has_cublaslt = False |
|
if cc is not None: |
|
cc_major, cc_minor = cc.split('.') |
|
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5): |
|
CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True) |
|
else: |
|
has_cublaslt = True |
|
return has_cublaslt |
|
|
|
def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]: |
|
return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path} |
|
|
|
|
|
def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]: |
|
existent_directories: Set[Path] = set() |
|
for path in candidate_paths: |
|
try: |
|
if path.exists(): |
|
existent_directories.add(path) |
|
except OSError as exc: |
|
if exc.errno != errno.ENAMETOOLONG: |
|
raise exc |
|
|
|
non_existent_directories: Set[Path] = candidate_paths - existent_directories |
|
if non_existent_directories: |
|
CUDASetup.get_instance().add_log_entry("WARNING: The following directories listed in your path were found to " |
|
f"be non-existent: {non_existent_directories}", is_warning=True) |
|
|
|
return existent_directories |
|
|
|
|
|
def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]: |
|
return { |
|
path / CUDA_RUNTIME_LIB |
|
for path in candidate_paths |
|
if (path / CUDA_RUNTIME_LIB).is_file() |
|
} |
|
|
|
|
|
def resolve_paths_list(paths_list_candidate: str) -> Set[Path]: |
|
""" |
|
Searches a given environmental var for the CUDA runtime library, |
|
i.e. `libcudart.so`. |
|
""" |
|
return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate)) |
|
|
|
|
|
def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]: |
|
return get_cuda_runtime_lib_paths( |
|
resolve_paths_list(paths_list_candidate) |
|
) |
|
|
|
|
|
def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None: |
|
if len(results_paths) > 1: |
|
warning_msg = ( |
|
f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. " |
|
"We'll flip a coin and try one of these, in order to fail forward.\n" |
|
"Either way, this might cause trouble in the future:\n" |
|
"If you get `CUDA error: invalid device function` errors, the above " |
|
"might be the cause and the solution is to make sure only one " |
|
f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.") |
|
CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True) |
|
|
|
|
|
def determine_cuda_runtime_lib_path() -> Union[Path, None]: |
|
""" |
|
Searches for a cuda installations, in the following order of priority: |
|
1. active conda env |
|
2. LD_LIBRARY_PATH |
|
3. any other env vars, while ignoring those that |
|
- are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`) |
|
- don't contain the path separator `/` |
|
|
|
If multiple libraries are found in part 3, we optimistically try one, |
|
while giving a warning message. |
|
""" |
|
candidate_env_vars = get_potentially_lib_path_containing_env_vars() |
|
|
|
if "CONDA_PREFIX" in candidate_env_vars: |
|
conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib" |
|
|
|
conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path)) |
|
warn_in_case_of_duplicates(conda_cuda_libs) |
|
|
|
if conda_cuda_libs: |
|
return next(iter(conda_cuda_libs)) |
|
|
|
CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain ' |
|
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True) |
|
|
|
if "LD_LIBRARY_PATH" in candidate_env_vars: |
|
lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"]) |
|
|
|
if lib_ld_cuda_libs: |
|
return next(iter(lib_ld_cuda_libs)) |
|
warn_in_case_of_duplicates(lib_ld_cuda_libs) |
|
|
|
CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["LD_LIBRARY_PATH"]} did not contain ' |
|
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True) |
|
|
|
remaining_candidate_env_vars = { |
|
env_var: value for env_var, value in candidate_env_vars.items() |
|
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"} |
|
} |
|
|
|
cuda_runtime_libs = set() |
|
for env_var, value in remaining_candidate_env_vars.items(): |
|
cuda_runtime_libs.update(find_cuda_lib_in(value)) |
|
|
|
if len(cuda_runtime_libs) == 0: |
|
CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...') |
|
cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64')) |
|
|
|
warn_in_case_of_duplicates(cuda_runtime_libs) |
|
|
|
return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None |
|
|
|
|
|
def check_cuda_result(cuda, result_val): |
|
|
|
if result_val != 0: |
|
error_str = ct.c_char_p() |
|
cuda.cuGetErrorString(result_val, ct.byref(error_str)) |
|
if error_str.value is not None: |
|
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}") |
|
else: |
|
CUDASetup.get_instance().add_log_entry(f"Unknown CUDA exception! Please check your CUDA install. It might also be that your GPU is too old.") |
|
|
|
|
|
|
|
def get_cuda_version(cuda, cudart_path): |
|
if cuda is None: return None |
|
|
|
try: |
|
cudart = ct.CDLL(cudart_path) |
|
except OSError: |
|
CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!') |
|
return None |
|
|
|
version = ct.c_int() |
|
try: |
|
check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version))) |
|
except AttributeError as e: |
|
CUDASetup.get_instance().add_log_entry(f'ERROR: {str(e)}') |
|
CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: libcudart.so path is {cudart_path}') |
|
CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: Is seems that your cuda installation is not in your path. See https://github.com/TimDettmers/bitsandbytes/issues/85 for more information.') |
|
version = int(version.value) |
|
major = version//1000 |
|
minor = (version-(major*1000))//10 |
|
|
|
if major < 11: |
|
CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!') |
|
|
|
return f'{major}{minor}' |
|
|
|
|
|
def get_cuda_lib_handle(): |
|
|
|
try: |
|
cuda = ct.CDLL("libcuda.so") |
|
except OSError: |
|
CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!') |
|
return None |
|
check_cuda_result(cuda, cuda.cuInit(0)) |
|
|
|
return cuda |
|
|
|
|
|
def get_compute_capabilities(cuda): |
|
""" |
|
1. find libcuda.so library (GPU driver) (/usr/lib) |
|
init_device -> init variables -> call function by reference |
|
2. call extern C function to determine CC |
|
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html) |
|
3. Check for CUDA errors |
|
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api |
|
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549 |
|
""" |
|
|
|
nGpus = ct.c_int() |
|
cc_major = ct.c_int() |
|
cc_minor = ct.c_int() |
|
|
|
device = ct.c_int() |
|
|
|
check_cuda_result(cuda, cuda.cuDeviceGetCount(ct.byref(nGpus))) |
|
ccs = [] |
|
for i in range(nGpus.value): |
|
check_cuda_result(cuda, cuda.cuDeviceGet(ct.byref(device), i)) |
|
ref_major = ct.byref(cc_major) |
|
ref_minor = ct.byref(cc_minor) |
|
|
|
check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device)) |
|
ccs.append(f"{cc_major.value}.{cc_minor.value}") |
|
|
|
return ccs |
|
|
|
|
|
|
|
def get_compute_capability(cuda): |
|
""" |
|
Extracts the highest compute capbility from all available GPUs, as compute |
|
capabilities are downwards compatible. If no GPUs are detected, it returns |
|
None. |
|
""" |
|
if cuda is None: return None |
|
|
|
|
|
ccs = get_compute_capabilities(cuda) |
|
if ccs: return ccs[-1] |
|
|
|
|
|
def evaluate_cuda_setup(): |
|
if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0': |
|
print('') |
|
print('='*35 + 'BUG REPORT' + '='*35) |
|
print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues') |
|
print('='*80) |
|
if torch.cuda.is_available(): return 'libbitsandbytes_cuda116.dll', None, None, None, None |
|
|
|
cuda_setup = CUDASetup.get_instance() |
|
cudart_path = determine_cuda_runtime_lib_path() |
|
cuda = get_cuda_lib_handle() |
|
cc = get_compute_capability(cuda) |
|
cuda_version_string = get_cuda_version(cuda, cudart_path) |
|
|
|
failure = False |
|
if cudart_path is None: |
|
failure = True |
|
cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True) |
|
else: |
|
cuda_setup.add_log_entry(f"CUDA SETUP: CUDA runtime path found: {cudart_path}") |
|
|
|
if cc == '' or cc is None: |
|
failure = True |
|
cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only library...", is_warning=True) |
|
else: |
|
cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}") |
|
|
|
if cuda is None: |
|
failure = True |
|
else: |
|
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}') |
|
|
|
|
|
has_cublaslt = is_cublasLt_compatible(cc) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if failure: |
|
binary_name = "libbitsandbytes_cpu.so" |
|
elif has_cublaslt: |
|
binary_name = f"libbitsandbytes_cuda{cuda_version_string}.so" |
|
else: |
|
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so" |
|
binary_name = f"libbitsandbytes_cuda{cuda_version_string}_nocublaslt.so" |
|
|
|
return binary_name, cudart_path, cuda, cc, cuda_version_string |
|
|