Upload 2 files
Browse files- .gitattributes +1 -0
- libbitsandbytes_cuda116.dll +3 -0
- main.py +412 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
libbitsandbytes_cuda116.dll filter=lfs diff=lfs merge=lfs -text
|
libbitsandbytes_cuda116.dll
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88f7bd2916ca3effc43f88492f1e1b9088d13cb5be3b4a3a4aede6aa3bf8d412
|
3 |
+
size 4724224
|
main.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
extract factors the build is dependent on:
|
3 |
+
[X] compute capability
|
4 |
+
[ ] TODO: Q - What if we have multiple GPUs of different makes?
|
5 |
+
- CUDA version
|
6 |
+
- Software:
|
7 |
+
- CPU-only: only CPU quantization functions (no optimizer, no matrix multipl)
|
8 |
+
- CuBLAS-LT: full-build 8-bit optimizer
|
9 |
+
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
|
10 |
+
|
11 |
+
evaluation:
|
12 |
+
- if paths faulty, return meaningful error
|
13 |
+
- else:
|
14 |
+
- determine CUDA version
|
15 |
+
- determine capabilities
|
16 |
+
- based on that set the default path
|
17 |
+
"""
|
18 |
+
|
19 |
+
import ctypes as ct
|
20 |
+
import os
|
21 |
+
import errno
|
22 |
+
import torch
|
23 |
+
from warnings import warn
|
24 |
+
|
25 |
+
from pathlib import Path
|
26 |
+
from typing import Set, Union
|
27 |
+
from .env_vars import get_potentially_lib_path_containing_env_vars
|
28 |
+
|
29 |
+
CUDA_RUNTIME_LIB: str = "libcudart.so"
|
30 |
+
|
31 |
+
class CUDASetup:
|
32 |
+
_instance = None
|
33 |
+
|
34 |
+
def __init__(self):
|
35 |
+
raise RuntimeError("Call get_instance() instead")
|
36 |
+
|
37 |
+
def generate_instructions(self):
|
38 |
+
if self.cuda is None:
|
39 |
+
self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.')
|
40 |
+
self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.')
|
41 |
+
self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:')
|
42 |
+
self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null')
|
43 |
+
self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a')
|
44 |
+
self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc')
|
45 |
+
return
|
46 |
+
|
47 |
+
if self.cudart_path is None:
|
48 |
+
self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.')
|
49 |
+
self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable')
|
50 |
+
self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null')
|
51 |
+
self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a')
|
52 |
+
self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc')
|
53 |
+
self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.')
|
54 |
+
self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh')
|
55 |
+
self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.')
|
56 |
+
self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local')
|
57 |
+
return
|
58 |
+
|
59 |
+
make_cmd = f'CUDA_VERSION={self.cuda_version_string}'
|
60 |
+
if len(self.cuda_version_string) < 3:
|
61 |
+
make_cmd += ' make cuda92'
|
62 |
+
elif self.cuda_version_string == '110':
|
63 |
+
make_cmd += ' make cuda110'
|
64 |
+
elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0:
|
65 |
+
make_cmd += ' make cuda11x'
|
66 |
+
elif self.cuda_version_string == '100':
|
67 |
+
self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.')
|
68 |
+
self.add_log_entry('CUDA SETUP: Before you try again running bitsandbytes, make sure old CUDA 10.0 versions are uninstalled and removed from $LD_LIBRARY_PATH variables.')
|
69 |
+
return
|
70 |
+
|
71 |
+
|
72 |
+
has_cublaslt = is_cublasLt_compatible(self.cc)
|
73 |
+
if not has_cublaslt:
|
74 |
+
make_cmd += '_nomatmul'
|
75 |
+
|
76 |
+
self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:')
|
77 |
+
self.add_log_entry('git clone git@github.com:TimDettmers/bitsandbytes.git')
|
78 |
+
self.add_log_entry('cd bitsandbytes')
|
79 |
+
self.add_log_entry(make_cmd)
|
80 |
+
self.add_log_entry('python setup.py install')
|
81 |
+
|
82 |
+
def initialize(self):
|
83 |
+
if not getattr(self, 'initialized', False):
|
84 |
+
self.has_printed = False
|
85 |
+
self.lib = None
|
86 |
+
self.initialized = False
|
87 |
+
|
88 |
+
def run_cuda_setup(self):
|
89 |
+
self.initialized = True
|
90 |
+
self.cuda_setup_log = []
|
91 |
+
|
92 |
+
binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
|
93 |
+
self.cudart_path = cudart_path
|
94 |
+
self.cuda = cuda
|
95 |
+
self.cc = cc
|
96 |
+
self.cuda_version_string = cuda_version_string
|
97 |
+
|
98 |
+
package_dir = Path(__file__).parent.parent
|
99 |
+
binary_path = package_dir / binary_name
|
100 |
+
|
101 |
+
try:
|
102 |
+
if not binary_path.exists():
|
103 |
+
self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?")
|
104 |
+
legacy_binary_name = "libbitsandbytes_cpu.so"
|
105 |
+
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
|
106 |
+
binary_path = package_dir / legacy_binary_name
|
107 |
+
if not binary_path.exists() or torch.cuda.is_available():
|
108 |
+
self.add_log_entry('')
|
109 |
+
self.add_log_entry('='*48 + 'ERROR' + '='*37)
|
110 |
+
self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
|
111 |
+
self.add_log_entry('1. CUDA driver not installed')
|
112 |
+
self.add_log_entry('2. CUDA not installed')
|
113 |
+
self.add_log_entry('3. You have multiple conflicting CUDA libraries')
|
114 |
+
self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
|
115 |
+
self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
|
116 |
+
self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.')
|
117 |
+
self.add_log_entry('='*80)
|
118 |
+
self.add_log_entry('')
|
119 |
+
self.generate_instructions()
|
120 |
+
self.print_log_stack()
|
121 |
+
raise Exception('CUDA SETUP: Setup Failed!')
|
122 |
+
self.lib = ct.cdll.LoadLibrary(str(binary_path))
|
123 |
+
else:
|
124 |
+
self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...")
|
125 |
+
self.lib = ct.cdll.LoadLibrary(str(binary_path))
|
126 |
+
except Exception as ex:
|
127 |
+
self.add_log_entry(str(ex))
|
128 |
+
self.print_log_stack()
|
129 |
+
|
130 |
+
def add_log_entry(self, msg, is_warning=False):
|
131 |
+
self.cuda_setup_log.append((msg, is_warning))
|
132 |
+
|
133 |
+
def print_log_stack(self):
|
134 |
+
for msg, is_warning in self.cuda_setup_log:
|
135 |
+
if is_warning:
|
136 |
+
warn(msg)
|
137 |
+
else:
|
138 |
+
print(msg)
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def get_instance(cls):
|
142 |
+
if cls._instance is None:
|
143 |
+
cls._instance = cls.__new__(cls)
|
144 |
+
cls._instance.initialize()
|
145 |
+
return cls._instance
|
146 |
+
|
147 |
+
|
148 |
+
def is_cublasLt_compatible(cc):
|
149 |
+
has_cublaslt = False
|
150 |
+
if cc is not None:
|
151 |
+
cc_major, cc_minor = cc.split('.')
|
152 |
+
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
|
153 |
+
CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
|
154 |
+
else:
|
155 |
+
has_cublaslt = True
|
156 |
+
return has_cublaslt
|
157 |
+
|
158 |
+
def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
|
159 |
+
return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
|
160 |
+
|
161 |
+
|
162 |
+
def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]:
|
163 |
+
existent_directories: Set[Path] = set()
|
164 |
+
for path in candidate_paths:
|
165 |
+
try:
|
166 |
+
if path.exists():
|
167 |
+
existent_directories.add(path)
|
168 |
+
except OSError as exc:
|
169 |
+
if exc.errno != errno.ENAMETOOLONG:
|
170 |
+
raise exc
|
171 |
+
|
172 |
+
non_existent_directories: Set[Path] = candidate_paths - existent_directories
|
173 |
+
if non_existent_directories:
|
174 |
+
CUDASetup.get_instance().add_log_entry("WARNING: The following directories listed in your path were found to "
|
175 |
+
f"be non-existent: {non_existent_directories}", is_warning=True)
|
176 |
+
|
177 |
+
return existent_directories
|
178 |
+
|
179 |
+
|
180 |
+
def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
|
181 |
+
return {
|
182 |
+
path / CUDA_RUNTIME_LIB
|
183 |
+
for path in candidate_paths
|
184 |
+
if (path / CUDA_RUNTIME_LIB).is_file()
|
185 |
+
}
|
186 |
+
|
187 |
+
|
188 |
+
def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
|
189 |
+
"""
|
190 |
+
Searches a given environmental var for the CUDA runtime library,
|
191 |
+
i.e. `libcudart.so`.
|
192 |
+
"""
|
193 |
+
return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
|
194 |
+
|
195 |
+
|
196 |
+
def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
|
197 |
+
return get_cuda_runtime_lib_paths(
|
198 |
+
resolve_paths_list(paths_list_candidate)
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
+
def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None:
|
203 |
+
if len(results_paths) > 1:
|
204 |
+
warning_msg = (
|
205 |
+
f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. "
|
206 |
+
"We'll flip a coin and try one of these, in order to fail forward.\n"
|
207 |
+
"Either way, this might cause trouble in the future:\n"
|
208 |
+
"If you get `CUDA error: invalid device function` errors, the above "
|
209 |
+
"might be the cause and the solution is to make sure only one "
|
210 |
+
f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.")
|
211 |
+
CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True)
|
212 |
+
|
213 |
+
|
214 |
+
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
|
215 |
+
"""
|
216 |
+
Searches for a cuda installations, in the following order of priority:
|
217 |
+
1. active conda env
|
218 |
+
2. LD_LIBRARY_PATH
|
219 |
+
3. any other env vars, while ignoring those that
|
220 |
+
- are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`)
|
221 |
+
- don't contain the path separator `/`
|
222 |
+
|
223 |
+
If multiple libraries are found in part 3, we optimistically try one,
|
224 |
+
while giving a warning message.
|
225 |
+
"""
|
226 |
+
candidate_env_vars = get_potentially_lib_path_containing_env_vars()
|
227 |
+
|
228 |
+
if "CONDA_PREFIX" in candidate_env_vars:
|
229 |
+
conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib"
|
230 |
+
|
231 |
+
conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path))
|
232 |
+
warn_in_case_of_duplicates(conda_cuda_libs)
|
233 |
+
|
234 |
+
if conda_cuda_libs:
|
235 |
+
return next(iter(conda_cuda_libs))
|
236 |
+
|
237 |
+
CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
|
238 |
+
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
|
239 |
+
|
240 |
+
if "LD_LIBRARY_PATH" in candidate_env_vars:
|
241 |
+
lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"])
|
242 |
+
|
243 |
+
if lib_ld_cuda_libs:
|
244 |
+
return next(iter(lib_ld_cuda_libs))
|
245 |
+
warn_in_case_of_duplicates(lib_ld_cuda_libs)
|
246 |
+
|
247 |
+
CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["LD_LIBRARY_PATH"]} did not contain '
|
248 |
+
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
|
249 |
+
|
250 |
+
remaining_candidate_env_vars = {
|
251 |
+
env_var: value for env_var, value in candidate_env_vars.items()
|
252 |
+
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"}
|
253 |
+
}
|
254 |
+
|
255 |
+
cuda_runtime_libs = set()
|
256 |
+
for env_var, value in remaining_candidate_env_vars.items():
|
257 |
+
cuda_runtime_libs.update(find_cuda_lib_in(value))
|
258 |
+
|
259 |
+
if len(cuda_runtime_libs) == 0:
|
260 |
+
CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...')
|
261 |
+
cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64'))
|
262 |
+
|
263 |
+
warn_in_case_of_duplicates(cuda_runtime_libs)
|
264 |
+
|
265 |
+
return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None
|
266 |
+
|
267 |
+
|
268 |
+
def check_cuda_result(cuda, result_val):
|
269 |
+
# 3. Check for CUDA errors
|
270 |
+
if result_val != 0:
|
271 |
+
error_str = ct.c_char_p()
|
272 |
+
cuda.cuGetErrorString(result_val, ct.byref(error_str))
|
273 |
+
if error_str.value is not None:
|
274 |
+
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
|
275 |
+
else:
|
276 |
+
CUDASetup.get_instance().add_log_entry(f"Unknown CUDA exception! Please check your CUDA install. It might also be that your GPU is too old.")
|
277 |
+
|
278 |
+
|
279 |
+
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
|
280 |
+
def get_cuda_version(cuda, cudart_path):
|
281 |
+
if cuda is None: return None
|
282 |
+
|
283 |
+
try:
|
284 |
+
cudart = ct.CDLL(cudart_path)
|
285 |
+
except OSError:
|
286 |
+
CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
|
287 |
+
return None
|
288 |
+
|
289 |
+
version = ct.c_int()
|
290 |
+
try:
|
291 |
+
check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
|
292 |
+
except AttributeError as e:
|
293 |
+
CUDASetup.get_instance().add_log_entry(f'ERROR: {str(e)}')
|
294 |
+
CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: libcudart.so path is {cudart_path}')
|
295 |
+
CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: Is seems that your cuda installation is not in your path. See https://github.com/TimDettmers/bitsandbytes/issues/85 for more information.')
|
296 |
+
version = int(version.value)
|
297 |
+
major = version//1000
|
298 |
+
minor = (version-(major*1000))//10
|
299 |
+
|
300 |
+
if major < 11:
|
301 |
+
CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
|
302 |
+
|
303 |
+
return f'{major}{minor}'
|
304 |
+
|
305 |
+
|
306 |
+
def get_cuda_lib_handle():
|
307 |
+
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
308 |
+
try:
|
309 |
+
cuda = ct.CDLL("libcuda.so")
|
310 |
+
except OSError:
|
311 |
+
CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
|
312 |
+
return None
|
313 |
+
check_cuda_result(cuda, cuda.cuInit(0))
|
314 |
+
|
315 |
+
return cuda
|
316 |
+
|
317 |
+
|
318 |
+
def get_compute_capabilities(cuda):
|
319 |
+
"""
|
320 |
+
1. find libcuda.so library (GPU driver) (/usr/lib)
|
321 |
+
init_device -> init variables -> call function by reference
|
322 |
+
2. call extern C function to determine CC
|
323 |
+
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
|
324 |
+
3. Check for CUDA errors
|
325 |
+
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
|
326 |
+
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
|
327 |
+
"""
|
328 |
+
|
329 |
+
nGpus = ct.c_int()
|
330 |
+
cc_major = ct.c_int()
|
331 |
+
cc_minor = ct.c_int()
|
332 |
+
|
333 |
+
device = ct.c_int()
|
334 |
+
|
335 |
+
check_cuda_result(cuda, cuda.cuDeviceGetCount(ct.byref(nGpus)))
|
336 |
+
ccs = []
|
337 |
+
for i in range(nGpus.value):
|
338 |
+
check_cuda_result(cuda, cuda.cuDeviceGet(ct.byref(device), i))
|
339 |
+
ref_major = ct.byref(cc_major)
|
340 |
+
ref_minor = ct.byref(cc_minor)
|
341 |
+
# 2. call extern C function to determine CC
|
342 |
+
check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device))
|
343 |
+
ccs.append(f"{cc_major.value}.{cc_minor.value}")
|
344 |
+
|
345 |
+
return ccs
|
346 |
+
|
347 |
+
|
348 |
+
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error
|
349 |
+
def get_compute_capability(cuda):
|
350 |
+
"""
|
351 |
+
Extracts the highest compute capbility from all available GPUs, as compute
|
352 |
+
capabilities are downwards compatible. If no GPUs are detected, it returns
|
353 |
+
None.
|
354 |
+
"""
|
355 |
+
if cuda is None: return None
|
356 |
+
|
357 |
+
# TODO: handle different compute capabilities; for now, take the max
|
358 |
+
ccs = get_compute_capabilities(cuda)
|
359 |
+
if ccs: return ccs[-1]
|
360 |
+
|
361 |
+
|
362 |
+
def evaluate_cuda_setup():
|
363 |
+
if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0':
|
364 |
+
print('')
|
365 |
+
print('='*35 + 'BUG REPORT' + '='*35)
|
366 |
+
print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
|
367 |
+
print('='*80)
|
368 |
+
if torch.cuda.is_available(): return 'libbitsandbytes_cuda116.dll', None, None, None, None
|
369 |
+
|
370 |
+
cuda_setup = CUDASetup.get_instance()
|
371 |
+
cudart_path = determine_cuda_runtime_lib_path()
|
372 |
+
cuda = get_cuda_lib_handle()
|
373 |
+
cc = get_compute_capability(cuda)
|
374 |
+
cuda_version_string = get_cuda_version(cuda, cudart_path)
|
375 |
+
|
376 |
+
failure = False
|
377 |
+
if cudart_path is None:
|
378 |
+
failure = True
|
379 |
+
cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
|
380 |
+
else:
|
381 |
+
cuda_setup.add_log_entry(f"CUDA SETUP: CUDA runtime path found: {cudart_path}")
|
382 |
+
|
383 |
+
if cc == '' or cc is None:
|
384 |
+
failure = True
|
385 |
+
cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only library...", is_warning=True)
|
386 |
+
else:
|
387 |
+
cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
|
388 |
+
|
389 |
+
if cuda is None:
|
390 |
+
failure = True
|
391 |
+
else:
|
392 |
+
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
|
393 |
+
|
394 |
+
# 7.5 is the minimum CC vor cublaslt
|
395 |
+
has_cublaslt = is_cublasLt_compatible(cc)
|
396 |
+
|
397 |
+
# TODO:
|
398 |
+
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
|
399 |
+
# (2) Multiple CUDA versions installed
|
400 |
+
|
401 |
+
# we use ls -l instead of nvcc to determine the cuda version
|
402 |
+
# since most installations will have the libcudart.so installed, but not the compiler
|
403 |
+
|
404 |
+
if failure:
|
405 |
+
binary_name = "libbitsandbytes_cpu.so"
|
406 |
+
elif has_cublaslt:
|
407 |
+
binary_name = f"libbitsandbytes_cuda{cuda_version_string}.so"
|
408 |
+
else:
|
409 |
+
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
|
410 |
+
binary_name = f"libbitsandbytes_cuda{cuda_version_string}_nocublaslt.so"
|
411 |
+
|
412 |
+
return binary_name, cudart_path, cuda, cc, cuda_version_string
|