YongdongWang commited on
Commit
635e0cd
·
verified ·
1 Parent(s): 42ae28f

Upload llama3.1-8b-lora-qlora-dart-llm LoRA adapter

Browse files
Files changed (1) hide show
  1. README.md +70 -16
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  library_name: peft
3
  base_model: meta-llama/Llama-3.1-8B
4
  tags:
@@ -9,15 +10,15 @@ tags:
9
  - robotics
10
  - task-planning
11
  - construction
12
- license: llama3.1
13
  language:
14
  - en
15
  pipeline_tag: text-generation
16
  ---
17
 
18
- # Llama 3.1 8B - Robot Task Planning (QLoRA Fine-tuned)
19
 
20
- This model is a QLoRA fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) specialized for **robot task planning** in construction environments.
21
 
22
  The model converts natural language commands into structured task sequences for construction robots including excavators and dump trucks.
23
 
@@ -25,27 +26,43 @@ The model converts natural language commands into structured task sequences for
25
 
26
  - **Base Model**: meta-llama/Llama-3.1-8B
27
  - **Fine-tuning Method**: QLoRA (4-bit quantization + LoRA)
28
- - **LoRA Rank**: 16
29
- - **LoRA Alpha**: 32
30
  - **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
 
 
31
 
32
  ## Usage
33
 
34
  ```python
35
  from transformers import AutoTokenizer, AutoModelForCausalLM
36
  from peft import PeftModel
 
37
 
38
  # Load tokenizer and base model
39
  tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
40
- base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B")
 
 
 
 
41
 
42
  # Load LoRA adapter
43
- model = PeftModel.from_pretrained(base_model, "YongdongWang/llama-3.1-8b-dart-qlora")
44
 
45
  # Generate robot task sequence
46
- command = "Deploy Excavator 1 to Soil Area 1 for excavation"
47
- inputs = tokenizer(command, return_tensors="pt")
48
- outputs = model.generate(**inputs, max_new_tokens=512)
 
 
 
 
 
 
 
 
 
49
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
50
  print(response)
51
  ```
@@ -54,10 +71,10 @@ print(response)
54
 
55
  - **Training Data**: DART LLM Tasks - Robot command and task planning dataset
56
  - **Domain**: Construction robotics (excavators, dump trucks, soil/rock areas)
57
- - **Training Epochs**: 5
58
- - **Batch Size**: 16 (with gradient accumulation)
59
- - **Learning Rate**: 2e-4
60
- - **Optimizer**: paged_adamw_8bit
61
 
62
  ## Capabilities
63
 
@@ -68,8 +85,45 @@ print(response)
68
 
69
  ## Example Output
70
 
71
- The model generates structured task sequences in JSON format for robot execution.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  ## Limitations
74
 
75
- This model is specifically trained for construction robotics scenarios and may not generalize to other domains without additional fine-tuning.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: llama3.1
3
  library_name: peft
4
  base_model: meta-llama/Llama-3.1-8B
5
  tags:
 
10
  - robotics
11
  - task-planning
12
  - construction
13
+ - dart-llm
14
  language:
15
  - en
16
  pipeline_tag: text-generation
17
  ---
18
 
19
+ # Llama 3.1 8B - DART LLM Robot Task Planning (QLoRA Fine-tuned)
20
 
21
+ This model is a QLoRA fine-tuned version of **meta-llama/Llama-3.1-8B** specialized for **robot task planning** in construction environments.
22
 
23
  The model converts natural language commands into structured task sequences for construction robots including excavators and dump trucks.
24
 
 
26
 
27
  - **Base Model**: meta-llama/Llama-3.1-8B
28
  - **Fine-tuning Method**: QLoRA (4-bit quantization + LoRA)
29
+ - **LoRA Rank**: 16-32 (optimized per model size)
30
+ - **LoRA Alpha**: 16-32
31
  - **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
32
+ - **Dataset**: YongdongWang/dart_llm_tasks_pretty
33
+ - **Training Domain**: Construction robotics
34
 
35
  ## Usage
36
 
37
  ```python
38
  from transformers import AutoTokenizer, AutoModelForCausalLM
39
  from peft import PeftModel
40
+ import torch
41
 
42
  # Load tokenizer and base model
43
  tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
44
+ base_model = AutoModelForCausalLM.from_pretrained(
45
+ "meta-llama/Llama-3.1-8B",
46
+ torch_dtype=torch.float16,
47
+ device_map="auto"
48
+ )
49
 
50
  # Load LoRA adapter
51
+ model = PeftModel.from_pretrained(base_model, "YongdongWang/llama3.1-8b-lora-qlora-dart-llm")
52
 
53
  # Generate robot task sequence
54
+ instruction = "Deploy Excavator 1 to Soil Area 1 for excavation"
55
+ prompt = f"### Instruction:\n{instruction}\n\n### Response:\n"
56
+ inputs = tokenizer(prompt, return_tensors="pt")
57
+
58
+ with torch.no_grad():
59
+ outputs = model.generate(
60
+ **inputs,
61
+ max_new_tokens=512,
62
+ do_sample=False,
63
+ pad_token_id=tokenizer.eos_token_id
64
+ )
65
+
66
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
67
  print(response)
68
  ```
 
71
 
72
  - **Training Data**: DART LLM Tasks - Robot command and task planning dataset
73
  - **Domain**: Construction robotics (excavators, dump trucks, soil/rock areas)
74
+ - **Training Epochs**: 6-12 (optimized per model size)
75
+ - **Batch Size**: 1 (with gradient accumulation)
76
+ - **Learning Rate**: 1e-4 to 3e-4 (scaled by model size)
77
+ - **Optimizer**: paged_adamw_8bit or adamw_torch
78
 
79
  ## Capabilities
80
 
 
85
 
86
  ## Example Output
87
 
88
+ The model generates structured task sequences in JSON format for robot execution:
89
+
90
+ ```json
91
+ {
92
+ "tasks": [
93
+ {
94
+ "instruction_function": {
95
+ "dependencies": [],
96
+ "name": "target_area_for_specific_robots",
97
+ "object_keywords": ["soil_area_1"],
98
+ "robot_ids": ["robot_excavator_01"],
99
+ "robot_type": null
100
+ },
101
+ "task": "target_area_for_specific_robots_1"
102
+ }
103
+ ]
104
+ }
105
+ ```
106
 
107
  ## Limitations
108
 
109
+ This model is specifically trained for construction robotics scenarios and may not generalize to other domains without additional fine-tuning.
110
+
111
+ ## Citation
112
+
113
+ ```bibtex
114
+ @misc{llama3.1_8b_lora_qlora_dart_llm,
115
+ title={Llama 3.1 8B Fine-tuned with QLoRA for DART LLM Tasks},
116
+ author={YongdongWang},
117
+ year={2024},
118
+ publisher={Hugging Face},
119
+ url={https://huggingface.co/YongdongWang/llama3.1-8b-lora-qlora-dart-llm}
120
+ }
121
+ ```
122
+
123
+ ## Model Card Authors
124
+
125
+ YongdongWang
126
+
127
+ ## Model Card Contact
128
+
129
+ For questions or issues, please open an issue in the repository or contact the model author.