|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: normal_en_to_poe_translator |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# normal_en_to_poe_translator |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0203 |
|
- Bleu: 17.4122 |
|
- Gen Len: 16.9451 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| |
|
| 1.3708 | 1.0 | 1182 | 1.2112 | 16.0712 | 16.9251 | |
|
| 1.2776 | 2.0 | 2364 | 1.1458 | 16.5284 | 16.9233 | |
|
| 1.2014 | 3.0 | 3546 | 1.1060 | 16.7928 | 16.9259 | |
|
| 1.1637 | 4.0 | 4728 | 1.0783 | 16.9978 | 16.9317 | |
|
| 1.1436 | 5.0 | 5910 | 1.0587 | 17.131 | 16.936 | |
|
| 1.109 | 6.0 | 7092 | 1.0427 | 17.2265 | 16.9386 | |
|
| 1.0912 | 7.0 | 8274 | 1.0324 | 17.2943 | 16.938 | |
|
| 1.0751 | 8.0 | 9456 | 1.0257 | 17.3605 | 16.9432 | |
|
| 1.0642 | 9.0 | 10638 | 1.0216 | 17.395 | 16.9426 | |
|
| 1.0567 | 10.0 | 11820 | 1.0203 | 17.4122 | 16.9451 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|