a2c-AntBulletEnv-v0 / config.json
YojitShinde's picture
Initial commit
997a292
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a383857c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a383857c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a383857c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a383857c700>", "_build": "<function ActorCriticPolicy._build at 0x7a383857c790>", "forward": "<function ActorCriticPolicy.forward at 0x7a383857c820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a383857c8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a383857c940>", "_predict": "<function ActorCriticPolicy._predict at 0x7a383857c9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a383857ca60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a383857caf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a383857cb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a383856fe80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689856283909319822, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABsJHD+NKfE+12q/Ptnmwr1z8GG9DVaXP0em4T7pA7K/4IEdP8y2KL91VTy9OEWtP5psrT9aUMo+YyE4P+5gzr0WwBM/z+MtPyt9HD95MRW/SPszvyBEqD2HLzM/1JEFvaN9eL85zg8/GCgBPy3fbT/3UnA/DFfsPkqjwT62AsO/l7m5PmtVXT/r1X89/XUzvnMBPT8FbFa8PzBCvyYdGbxJWlg/driqP/DI8L7QI5Q9EasnvSi6EkA1EC0/w9kjQJCx5D4+UyE/jruEP1liEb6jfXi/Oc4PPx21/b8t320/Si8hP0SbiL+JJ7U+SJZKPyM1u7+8prM/G4O+Pgxtkb/esJ0+0g/KvQZSAkApH/U9JFqSvzU3K8AUIyy/FA2qv/ma974XQsi/VaBYP3mizTwmIDK/AlbcPCzOaL+hzwM8Ot6DPznODz8YKAE/QMGJv5i9z75xYNo9Ul//PrPmJj9wA4i/hA4GP1TrET8/t/69pbgpP/MZ+T/+Jzs/ozyLPAO2tb/YP047h6CDvnkHmr/+2Ry92AoJvXqdWT+3s2q96+sUvxH54T/S9WK/IxlGPjregz/83OO/GCgBP0DBib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3ycw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA208/PAAAAAB7NP+/AAAAAJuPRz0AAAAAOZ3/PwAAAAA1vQU+AAAAAEiq+j8AAAAA3DjQvQAAAACWxfK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmx+7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCG6Dz4AAAAAFHMAwAAAAAA7xyO9AAAAALKm9T8AAAAAUXuMPQAAAAA8Hvs/AAAAAHmOBD4AAAAAn5TxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRG7bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICk9Pw9AAAAAKYw4r8AAAAA5V6NvQAAAAAhw+Y/AAAAAPvlD70AAAAAx+bnPwAAAAB0r6Y9AAAAABsm678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACc8ck1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkoDXPQAAAAAuX/S/AAAAAIbBAT4AAAAA0Y3ePwAAAACHuVy9AAAAAH9f4D8AAAAAUwm7vQAAAADX7vG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4rlkrf+COMAWyUTegDjAF0lEdAqm6Kliz9j3V9lChoBkdAl6GmQ4jrzGgHTegDaAhHQKp6UADJU5x1fZQoaAZHQJjXPOAy2x9oB03oA2gIR0CqemXu/k/9dX2UKGgGR0Caoza1TisGaAdN6ANoCEdAqn0SfcvdunV9lChoBkdAnCig88s+V2gHTegDaAhHQKp9dmGucMF1fZQoaAZHQJ+44POIInloB03oA2gIR0CqhzHGS6lMdX2UKGgGR0CcfA2oNutPaAdN6ANoCEdAqodKLdepoHV9lChoBkdAoAjrG1hLG2gHTegDaAhHQKqKB/smfGx1fZQoaAZHQJ09uyZ8a4toB03oA2gIR0CqimnCO3lTdX2UKGgGR0CcO22exwAEaAdN6ANoCEdAqpZJMHryD3V9lChoBkdAnopBczImxGgHTegDaAhHQKqWYQVbiZR1fZQoaAZHQJ2GuJJoTPBoB03oA2gIR0CqmTgX2ugZdX2UKGgGR0Ccbi/Vy3kQaAdN6ANoCEdAqpmfxJ/XoXV9lChoBkdAnPZwBo24u2gHTegDaAhHQKqjZFYuCf91fZQoaAZHQJXYG3CsOoZoB03oA2gIR0Cqo3s36yjYdX2UKGgGR0CWzhJC0F8paAdN6ANoCEdAqqY5K6FuenV9lChoBkdAnPilFhG6PWgHTegDaAhHQKqmoOqebut1fZQoaAZHQJiv3s3Q2MtoB03oA2gIR0CqspkWAPNFdX2UKGgGR0CfKGtSydFwaAdN6ANoCEdAqrKvE61b7nV9lChoBkdAn+nvbTMJQmgHTegDaAhHQKq1cKXv6TJ1fZQoaAZHQJ80wW8AaNxoB03oA2gIR0CqtdGTTvy9dX2UKGgGR0CcI+WpqASWaAdN6ANoCEdAqr9tkvsZ53V9lChoBkdAmkHarNnoPmgHTegDaAhHQKq/hEH+qBF1fZQoaAZHQJsyrPJJXhhoB03oA2gIR0Cqwi2RJVbSdX2UKGgGR0CflkAqNIbwaAdN6ANoCEdAqsKKs0YTCnV9lChoBkdAnzeKxC6YmmgHTegDaAhHQKrOV8HfMwF1fZQoaAZHQKCAWgKWszVoB03oA2gIR0Cqzm6tT1kEdX2UKGgGR0CdtZZHd43WaAdN6ANoCEdAqtEhoIv8InV9lChoBkdAn8BBwIdELGgHTegDaAhHQKrRhFYMfA91fZQoaAZHQKBJsehf0EpoB03oA2gIR0Cq2ylJg9eQdX2UKGgGR0CetZHJtBOYaAdN6ANoCEdAqttAwVTJhnV9lChoBkdAn5BAuh9LH2gHTegDaAhHQKrd9q33HrB1fZQoaAZHQJ+1bXI2fkFoB03oA2gIR0Cq3l5dOZb7dX2UKGgGR0CXmcIw/PgOaAdN6ANoCEdAquowFaB7NXV9lChoBkdAfChRJ2+wkmgHTegDaAhHQKrqR5tWMjx1fZQoaAZHQJ0nazlcQiBoB03oA2gIR0Cq7QEA5q/NdX2UKGgGR0CbGkRQaaTfaAdN6ANoCEdAqu1fAqNIb3V9lChoBkdAkVNzDKoybmgHTegDaAhHQKr2+ohIOH51fZQoaAZHQJa+nk0aZQZoB03oA2gIR0Cq9xGj9GZvdX2UKGgGR0Cb15vfj0cwaAdN6ANoCEdAqvn5BkZrHnV9lChoBkdAnQkzdHlOoGgHTegDaAhHQKr6jN8ma6V1fZQoaAZHQI7mkVFhG6RoB03KAmgIR0CrBRaRp1zRdX2UKGgGR0CcdPyz5XU6aAdN6ANoCEdAqwXnU8V58nV9lChoBkdAmUYKraM72mgHTegDaAhHQKsF/PznRsx1fZQoaAZHQJoo/0AcT8JoB03oA2gIR0CrCQVTzd1udX2UKGgGR0Ca1zURFqi5aAdN6ANoCEdAqxGv2K2rn3V9lChoBkdAnPAGnO0LMWgHTegDaAhHQKsSeg4ffXR1fZQoaAZHQJcpOJiy6c1oB03oA2gIR0CrEpAeRxLkdX2UKGgGR0CfpyCeVcD9aAdN6ANoCEdAqxYx3os7MnV9lChoBkdAmcCcERrad2gHTegDaAhHQKsgpB/I8yN1fZQoaAZHQJlGGltTDO1oB03oA2gIR0CrIXV5jYqYdX2UKGgGR0CceM5EMLF5aAdN6ANoCEdAqyGN+ocaO3V9lChoBkdAlX25+hGpdmgHTegDaAhHQKskyp3os7N1fZQoaAZHQJ2Yju1F6RhoB03oA2gIR0CrLaJQLux9dX2UKGgGR0CfJmbNr0rcaAdN6ANoCEdAqy52aOPvKHV9lChoBkdAi9PfiPyTZGgHTegDaAhHQKsujVI7Njd1fZQoaAZHQKAX8bxVhkRoB03oA2gIR0CrMprGJemfdX2UKGgGR0CdWrylenhsaAdN6ANoCEdAqzzDHuJDV3V9lChoBkdAnXM+HSF492gHTegDaAhHQKs9ljvNNah1fZQoaAZHQJ3whTl1bJRoB03oA2gIR0CrPa7NB4UvdX2UKGgGR0CeMXQNkOI7aAdN6ANoCEdAq0DCuuA7P3V9lChoBkdAnyDLMxGlRGgHTegDaAhHQKtJmoXKr7x1fZQoaAZHQIsBtV1fVqhoB03oA2gIR0CrSnDzAeq8dX2UKGgGR0CYzA1WsA/+aAdN6ANoCEdAq0qH+l0o0HV9lChoBkdAlQndwFTvRmgHTegDaAhHQKtPDn2ZiNN1fZQoaAZHQJrz5AeJYT1oB03oA2gIR0CrWLldkauPdX2UKGgGR0CdeqgXuVopaAdN6ANoCEdAq1mQsVclgXV9lChoBkdAmo6WSMcZL2gHTegDaAhHQKtZqAMlTm51fZQoaAZHQJ046hoM8YBoB03oA2gIR0CrXMCaiKzidX2UKGgGR0CeU1/iHZbqaAdN6ANoCEdAq2WWTPjXF3V9lChoBkdAk/Yjghr302gHTegDaAhHQKtmtTNt65Z1fZQoaAZHQJ37e26TW5JoB03oA2gIR0CrZtbGm1pkdX2UKGgGR0Ca0ZUiILw4aAdN6ANoCEdAq2t3/zasZHV9lChoBkdAmRQrjLjgh2gHTegDaAhHQKt07AnDziF1fZQoaAZHQJTTnj7yhBZoB03oA2gIR0CrdcOuzQeFdX2UKGgGR0CYnW+qzZ6EaAdN6ANoCEdAq3XeDtgKGHV9lChoBkdAlN2fPcBU72gHTegDaAhHQKt4/oHLRrt1fZQoaAZHQJuMHFERaoxoB03oA2gIR0CrgkwAMlTndX2UKGgGR0CcVM3B55Z9aAdN6ANoCEdAq4N9qSHM2XV9lChoBkdAnSBCv9tMwmgHTegDaAhHQKuDoglnh891fZQoaAZHQJ4ixZvDP4VoB03oA2gIR0CriDV4Pf8/dX2UKGgGR0CeSKxRVIZqaAdN6ANoCEdAq5DtK28Zk3V9lChoBkdAnZAlKCg9NmgHTegDaAhHQKuRvujRD1J1fZQoaAZHQKBQ2AMlTm5oB03oA2gIR0CrkdXrdFfBdX2UKGgGR0CeXkIqbz9TaAdN6ANoCEdAq5T7VSXMQnV9lChoBkdAn0tOfdyksWgHTegDaAhHQKueimWt2cJ1fZQoaAZHQJ8nn8sMAm1oB03oA2gIR0Crn7i+10DEdX2UKGgGR0CfvrffoA4oaAdN6ANoCEdAq5/cKsuFpXV9lChoBkdAn7S3rY5DJGgHTegDaAhHQKuj9zLfUF11fZQoaAZHQKBTmfCAMDxoB03oA2gIR0CrrKn7xd6cdX2UKGgGR0CfqlSL61staAdN6ANoCEdAq61+3+dbxHV9lChoBkdAoNzbzK9wm2gHTegDaAhHQKutlo6CDmN1fZQoaAZHQKB73ZPl+3JoB03oA2gIR0CrsL0kOZssdX2UKGgGR0CecMW8yvcKaAdN6ANoCEdAq7pzXQMQVnV9lChoBkdAm3/Pj0cwQGgHTegDaAhHQKu7s3o9s8B1fZQoaAZHQJ72R8YyfthoB03oA2gIR0Cru9cvEjxDdX2UKGgGR0CQfhHpbD/EaAdN6ANoCEdAq7+0Pz4DcXV9lChoBkdAoBejEaVD8mgHTegDaAhHQKvIZyo4uK51fZQoaAZHQKCOL2ovSMNoB03oA2gIR0CryTe98JD3dX2UKGgGR0Ce3jv4/NaAaAdN6ANoCEdAq8lOOhkAgnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}