YojitShinde
commited on
Commit
•
997a292
1
Parent(s):
b1c90fb
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2083.21 +/- 52.79
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1df589a58c74fe421df9ce1a6d20bca94eae3ef76c94b95175413ad2a178b8fd
|
3 |
+
size 129246
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a383857c550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a383857c5e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a383857c670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a383857c700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a383857c790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a383857c820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a383857c8b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a383857c940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a383857c9d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a383857ca60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a383857caf0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a383857cb80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a383856fe80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1689856283909319822,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABsJHD+NKfE+12q/Ptnmwr1z8GG9DVaXP0em4T7pA7K/4IEdP8y2KL91VTy9OEWtP5psrT9aUMo+YyE4P+5gzr0WwBM/z+MtPyt9HD95MRW/SPszvyBEqD2HLzM/1JEFvaN9eL85zg8/GCgBPy3fbT/3UnA/DFfsPkqjwT62AsO/l7m5PmtVXT/r1X89/XUzvnMBPT8FbFa8PzBCvyYdGbxJWlg/driqP/DI8L7QI5Q9EasnvSi6EkA1EC0/w9kjQJCx5D4+UyE/jruEP1liEb6jfXi/Oc4PPx21/b8t320/Si8hP0SbiL+JJ7U+SJZKPyM1u7+8prM/G4O+Pgxtkb/esJ0+0g/KvQZSAkApH/U9JFqSvzU3K8AUIyy/FA2qv/ma974XQsi/VaBYP3mizTwmIDK/AlbcPCzOaL+hzwM8Ot6DPznODz8YKAE/QMGJv5i9z75xYNo9Ul//PrPmJj9wA4i/hA4GP1TrET8/t/69pbgpP/MZ+T/+Jzs/ozyLPAO2tb/YP047h6CDvnkHmr/+2Ry92AoJvXqdWT+3s2q96+sUvxH54T/S9WK/IxlGPjregz/83OO/GCgBP0DBib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3ycw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA208/PAAAAAB7NP+/AAAAAJuPRz0AAAAAOZ3/PwAAAAA1vQU+AAAAAEiq+j8AAAAA3DjQvQAAAACWxfK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmx+7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCG6Dz4AAAAAFHMAwAAAAAA7xyO9AAAAALKm9T8AAAAAUXuMPQAAAAA8Hvs/AAAAAHmOBD4AAAAAn5TxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRG7bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICk9Pw9AAAAAKYw4r8AAAAA5V6NvQAAAAAhw+Y/AAAAAPvlD70AAAAAx+bnPwAAAAB0r6Y9AAAAABsm678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACc8ck1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkoDXPQAAAAAuX/S/AAAAAIbBAT4AAAAA0Y3ePwAAAACHuVy9AAAAAH9f4D8AAAAAUwm7vQAAAADX7vG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4rlkrf+COMAWyUTegDjAF0lEdAqm6Kliz9j3V9lChoBkdAl6GmQ4jrzGgHTegDaAhHQKp6UADJU5x1fZQoaAZHQJjXPOAy2x9oB03oA2gIR0CqemXu/k/9dX2UKGgGR0Caoza1TisGaAdN6ANoCEdAqn0SfcvdunV9lChoBkdAnCig88s+V2gHTegDaAhHQKp9dmGucMF1fZQoaAZHQJ+44POIInloB03oA2gIR0CqhzHGS6lMdX2UKGgGR0CcfA2oNutPaAdN6ANoCEdAqodKLdepoHV9lChoBkdAoAjrG1hLG2gHTegDaAhHQKqKB/smfGx1fZQoaAZHQJ09uyZ8a4toB03oA2gIR0CqimnCO3lTdX2UKGgGR0CcO22exwAEaAdN6ANoCEdAqpZJMHryD3V9lChoBkdAnopBczImxGgHTegDaAhHQKqWYQVbiZR1fZQoaAZHQJ2GuJJoTPBoB03oA2gIR0CqmTgX2ugZdX2UKGgGR0Ccbi/Vy3kQaAdN6ANoCEdAqpmfxJ/XoXV9lChoBkdAnPZwBo24u2gHTegDaAhHQKqjZFYuCf91fZQoaAZHQJXYG3CsOoZoB03oA2gIR0Cqo3s36yjYdX2UKGgGR0CWzhJC0F8paAdN6ANoCEdAqqY5K6FuenV9lChoBkdAnPilFhG6PWgHTegDaAhHQKqmoOqebut1fZQoaAZHQJiv3s3Q2MtoB03oA2gIR0CqspkWAPNFdX2UKGgGR0CfKGtSydFwaAdN6ANoCEdAqrKvE61b7nV9lChoBkdAn+nvbTMJQmgHTegDaAhHQKq1cKXv6TJ1fZQoaAZHQJ80wW8AaNxoB03oA2gIR0CqtdGTTvy9dX2UKGgGR0CcI+WpqASWaAdN6ANoCEdAqr9tkvsZ53V9lChoBkdAmkHarNnoPmgHTegDaAhHQKq/hEH+qBF1fZQoaAZHQJsyrPJJXhhoB03oA2gIR0Cqwi2RJVbSdX2UKGgGR0CflkAqNIbwaAdN6ANoCEdAqsKKs0YTCnV9lChoBkdAnzeKxC6YmmgHTegDaAhHQKrOV8HfMwF1fZQoaAZHQKCAWgKWszVoB03oA2gIR0Cqzm6tT1kEdX2UKGgGR0CdtZZHd43WaAdN6ANoCEdAqtEhoIv8InV9lChoBkdAn8BBwIdELGgHTegDaAhHQKrRhFYMfA91fZQoaAZHQKBJsehf0EpoB03oA2gIR0Cq2ylJg9eQdX2UKGgGR0CetZHJtBOYaAdN6ANoCEdAqttAwVTJhnV9lChoBkdAn5BAuh9LH2gHTegDaAhHQKrd9q33HrB1fZQoaAZHQJ+1bXI2fkFoB03oA2gIR0Cq3l5dOZb7dX2UKGgGR0CXmcIw/PgOaAdN6ANoCEdAquowFaB7NXV9lChoBkdAfChRJ2+wkmgHTegDaAhHQKrqR5tWMjx1fZQoaAZHQJ0nazlcQiBoB03oA2gIR0Cq7QEA5q/NdX2UKGgGR0CbGkRQaaTfaAdN6ANoCEdAqu1fAqNIb3V9lChoBkdAkVNzDKoybmgHTegDaAhHQKr2+ohIOH51fZQoaAZHQJa+nk0aZQZoB03oA2gIR0Cq9xGj9GZvdX2UKGgGR0Cb15vfj0cwaAdN6ANoCEdAqvn5BkZrHnV9lChoBkdAnQkzdHlOoGgHTegDaAhHQKr6jN8ma6V1fZQoaAZHQI7mkVFhG6RoB03KAmgIR0CrBRaRp1zRdX2UKGgGR0CcdPyz5XU6aAdN6ANoCEdAqwXnU8V58nV9lChoBkdAmUYKraM72mgHTegDaAhHQKsF/PznRsx1fZQoaAZHQJoo/0AcT8JoB03oA2gIR0CrCQVTzd1udX2UKGgGR0Ca1zURFqi5aAdN6ANoCEdAqxGv2K2rn3V9lChoBkdAnPAGnO0LMWgHTegDaAhHQKsSeg4ffXR1fZQoaAZHQJcpOJiy6c1oB03oA2gIR0CrEpAeRxLkdX2UKGgGR0CfpyCeVcD9aAdN6ANoCEdAqxYx3os7MnV9lChoBkdAmcCcERrad2gHTegDaAhHQKsgpB/I8yN1fZQoaAZHQJlGGltTDO1oB03oA2gIR0CrIXV5jYqYdX2UKGgGR0CceM5EMLF5aAdN6ANoCEdAqyGN+ocaO3V9lChoBkdAlX25+hGpdmgHTegDaAhHQKskyp3os7N1fZQoaAZHQJ2Yju1F6RhoB03oA2gIR0CrLaJQLux9dX2UKGgGR0CfJmbNr0rcaAdN6ANoCEdAqy52aOPvKHV9lChoBkdAi9PfiPyTZGgHTegDaAhHQKsujVI7Njd1fZQoaAZHQKAX8bxVhkRoB03oA2gIR0CrMprGJemfdX2UKGgGR0CdWrylenhsaAdN6ANoCEdAqzzDHuJDV3V9lChoBkdAnXM+HSF492gHTegDaAhHQKs9ljvNNah1fZQoaAZHQJ3whTl1bJRoB03oA2gIR0CrPa7NB4UvdX2UKGgGR0CeMXQNkOI7aAdN6ANoCEdAq0DCuuA7P3V9lChoBkdAnyDLMxGlRGgHTegDaAhHQKtJmoXKr7x1fZQoaAZHQIsBtV1fVqhoB03oA2gIR0CrSnDzAeq8dX2UKGgGR0CYzA1WsA/+aAdN6ANoCEdAq0qH+l0o0HV9lChoBkdAlQndwFTvRmgHTegDaAhHQKtPDn2ZiNN1fZQoaAZHQJrz5AeJYT1oB03oA2gIR0CrWLldkauPdX2UKGgGR0CdeqgXuVopaAdN6ANoCEdAq1mQsVclgXV9lChoBkdAmo6WSMcZL2gHTegDaAhHQKtZqAMlTm51fZQoaAZHQJ046hoM8YBoB03oA2gIR0CrXMCaiKzidX2UKGgGR0CeU1/iHZbqaAdN6ANoCEdAq2WWTPjXF3V9lChoBkdAk/Yjghr302gHTegDaAhHQKtmtTNt65Z1fZQoaAZHQJ37e26TW5JoB03oA2gIR0CrZtbGm1pkdX2UKGgGR0Ca0ZUiILw4aAdN6ANoCEdAq2t3/zasZHV9lChoBkdAmRQrjLjgh2gHTegDaAhHQKt07AnDziF1fZQoaAZHQJTTnj7yhBZoB03oA2gIR0CrdcOuzQeFdX2UKGgGR0CYnW+qzZ6EaAdN6ANoCEdAq3XeDtgKGHV9lChoBkdAlN2fPcBU72gHTegDaAhHQKt4/oHLRrt1fZQoaAZHQJuMHFERaoxoB03oA2gIR0CrgkwAMlTndX2UKGgGR0CcVM3B55Z9aAdN6ANoCEdAq4N9qSHM2XV9lChoBkdAnSBCv9tMwmgHTegDaAhHQKuDoglnh891fZQoaAZHQJ4ixZvDP4VoB03oA2gIR0CriDV4Pf8/dX2UKGgGR0CeSKxRVIZqaAdN6ANoCEdAq5DtK28Zk3V9lChoBkdAnZAlKCg9NmgHTegDaAhHQKuRvujRD1J1fZQoaAZHQKBQ2AMlTm5oB03oA2gIR0CrkdXrdFfBdX2UKGgGR0CeXkIqbz9TaAdN6ANoCEdAq5T7VSXMQnV9lChoBkdAn0tOfdyksWgHTegDaAhHQKueimWt2cJ1fZQoaAZHQJ8nn8sMAm1oB03oA2gIR0Crn7i+10DEdX2UKGgGR0CfvrffoA4oaAdN6ANoCEdAq5/cKsuFpXV9lChoBkdAn7S3rY5DJGgHTegDaAhHQKuj9zLfUF11fZQoaAZHQKBTmfCAMDxoB03oA2gIR0CrrKn7xd6cdX2UKGgGR0CfqlSL61staAdN6ANoCEdAq61+3+dbxHV9lChoBkdAoNzbzK9wm2gHTegDaAhHQKutlo6CDmN1fZQoaAZHQKB73ZPl+3JoB03oA2gIR0CrsL0kOZssdX2UKGgGR0CecMW8yvcKaAdN6ANoCEdAq7pzXQMQVnV9lChoBkdAm3/Pj0cwQGgHTegDaAhHQKu7s3o9s8B1fZQoaAZHQJ72R8YyfthoB03oA2gIR0Cru9cvEjxDdX2UKGgGR0CQfhHpbD/EaAdN6ANoCEdAq7+0Pz4DcXV9lChoBkdAoBejEaVD8mgHTegDaAhHQKvIZyo4uK51fZQoaAZHQKCOL2ovSMNoB03oA2gIR0CryTe98JD3dX2UKGgGR0Ce3jv4/NaAaAdN6ANoCEdAq8lOOhkAgnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2326969a84283d59209e9b0422c449b48dcb5b5786bc9c3ac77d14298d782f2
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d05f83ffc3c6a193e89fa46ddebd006c4384c94fa14faa397c87687fbf7bcb38
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a383857c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a383857c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a383857c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a383857c700>", "_build": "<function ActorCriticPolicy._build at 0x7a383857c790>", "forward": "<function ActorCriticPolicy.forward at 0x7a383857c820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a383857c8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a383857c940>", "_predict": "<function ActorCriticPolicy._predict at 0x7a383857c9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a383857ca60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a383857caf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a383857cb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a383856fe80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689856283909319822, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABsJHD+NKfE+12q/Ptnmwr1z8GG9DVaXP0em4T7pA7K/4IEdP8y2KL91VTy9OEWtP5psrT9aUMo+YyE4P+5gzr0WwBM/z+MtPyt9HD95MRW/SPszvyBEqD2HLzM/1JEFvaN9eL85zg8/GCgBPy3fbT/3UnA/DFfsPkqjwT62AsO/l7m5PmtVXT/r1X89/XUzvnMBPT8FbFa8PzBCvyYdGbxJWlg/driqP/DI8L7QI5Q9EasnvSi6EkA1EC0/w9kjQJCx5D4+UyE/jruEP1liEb6jfXi/Oc4PPx21/b8t320/Si8hP0SbiL+JJ7U+SJZKPyM1u7+8prM/G4O+Pgxtkb/esJ0+0g/KvQZSAkApH/U9JFqSvzU3K8AUIyy/FA2qv/ma974XQsi/VaBYP3mizTwmIDK/AlbcPCzOaL+hzwM8Ot6DPznODz8YKAE/QMGJv5i9z75xYNo9Ul//PrPmJj9wA4i/hA4GP1TrET8/t/69pbgpP/MZ+T/+Jzs/ozyLPAO2tb/YP047h6CDvnkHmr/+2Ry92AoJvXqdWT+3s2q96+sUvxH54T/S9WK/IxlGPjregz/83OO/GCgBP0DBib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3ycw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA208/PAAAAAB7NP+/AAAAAJuPRz0AAAAAOZ3/PwAAAAA1vQU+AAAAAEiq+j8AAAAA3DjQvQAAAACWxfK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmx+7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCG6Dz4AAAAAFHMAwAAAAAA7xyO9AAAAALKm9T8AAAAAUXuMPQAAAAA8Hvs/AAAAAHmOBD4AAAAAn5TxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRG7bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICk9Pw9AAAAAKYw4r8AAAAA5V6NvQAAAAAhw+Y/AAAAAPvlD70AAAAAx+bnPwAAAAB0r6Y9AAAAABsm678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACc8ck1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkoDXPQAAAAAuX/S/AAAAAIbBAT4AAAAA0Y3ePwAAAACHuVy9AAAAAH9f4D8AAAAAUwm7vQAAAADX7vG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4rlkrf+COMAWyUTegDjAF0lEdAqm6Kliz9j3V9lChoBkdAl6GmQ4jrzGgHTegDaAhHQKp6UADJU5x1fZQoaAZHQJjXPOAy2x9oB03oA2gIR0CqemXu/k/9dX2UKGgGR0Caoza1TisGaAdN6ANoCEdAqn0SfcvdunV9lChoBkdAnCig88s+V2gHTegDaAhHQKp9dmGucMF1fZQoaAZHQJ+44POIInloB03oA2gIR0CqhzHGS6lMdX2UKGgGR0CcfA2oNutPaAdN6ANoCEdAqodKLdepoHV9lChoBkdAoAjrG1hLG2gHTegDaAhHQKqKB/smfGx1fZQoaAZHQJ09uyZ8a4toB03oA2gIR0CqimnCO3lTdX2UKGgGR0CcO22exwAEaAdN6ANoCEdAqpZJMHryD3V9lChoBkdAnopBczImxGgHTegDaAhHQKqWYQVbiZR1fZQoaAZHQJ2GuJJoTPBoB03oA2gIR0CqmTgX2ugZdX2UKGgGR0Ccbi/Vy3kQaAdN6ANoCEdAqpmfxJ/XoXV9lChoBkdAnPZwBo24u2gHTegDaAhHQKqjZFYuCf91fZQoaAZHQJXYG3CsOoZoB03oA2gIR0Cqo3s36yjYdX2UKGgGR0CWzhJC0F8paAdN6ANoCEdAqqY5K6FuenV9lChoBkdAnPilFhG6PWgHTegDaAhHQKqmoOqebut1fZQoaAZHQJiv3s3Q2MtoB03oA2gIR0CqspkWAPNFdX2UKGgGR0CfKGtSydFwaAdN6ANoCEdAqrKvE61b7nV9lChoBkdAn+nvbTMJQmgHTegDaAhHQKq1cKXv6TJ1fZQoaAZHQJ80wW8AaNxoB03oA2gIR0CqtdGTTvy9dX2UKGgGR0CcI+WpqASWaAdN6ANoCEdAqr9tkvsZ53V9lChoBkdAmkHarNnoPmgHTegDaAhHQKq/hEH+qBF1fZQoaAZHQJsyrPJJXhhoB03oA2gIR0Cqwi2RJVbSdX2UKGgGR0CflkAqNIbwaAdN6ANoCEdAqsKKs0YTCnV9lChoBkdAnzeKxC6YmmgHTegDaAhHQKrOV8HfMwF1fZQoaAZHQKCAWgKWszVoB03oA2gIR0Cqzm6tT1kEdX2UKGgGR0CdtZZHd43WaAdN6ANoCEdAqtEhoIv8InV9lChoBkdAn8BBwIdELGgHTegDaAhHQKrRhFYMfA91fZQoaAZHQKBJsehf0EpoB03oA2gIR0Cq2ylJg9eQdX2UKGgGR0CetZHJtBOYaAdN6ANoCEdAqttAwVTJhnV9lChoBkdAn5BAuh9LH2gHTegDaAhHQKrd9q33HrB1fZQoaAZHQJ+1bXI2fkFoB03oA2gIR0Cq3l5dOZb7dX2UKGgGR0CXmcIw/PgOaAdN6ANoCEdAquowFaB7NXV9lChoBkdAfChRJ2+wkmgHTegDaAhHQKrqR5tWMjx1fZQoaAZHQJ0nazlcQiBoB03oA2gIR0Cq7QEA5q/NdX2UKGgGR0CbGkRQaaTfaAdN6ANoCEdAqu1fAqNIb3V9lChoBkdAkVNzDKoybmgHTegDaAhHQKr2+ohIOH51fZQoaAZHQJa+nk0aZQZoB03oA2gIR0Cq9xGj9GZvdX2UKGgGR0Cb15vfj0cwaAdN6ANoCEdAqvn5BkZrHnV9lChoBkdAnQkzdHlOoGgHTegDaAhHQKr6jN8ma6V1fZQoaAZHQI7mkVFhG6RoB03KAmgIR0CrBRaRp1zRdX2UKGgGR0CcdPyz5XU6aAdN6ANoCEdAqwXnU8V58nV9lChoBkdAmUYKraM72mgHTegDaAhHQKsF/PznRsx1fZQoaAZHQJoo/0AcT8JoB03oA2gIR0CrCQVTzd1udX2UKGgGR0Ca1zURFqi5aAdN6ANoCEdAqxGv2K2rn3V9lChoBkdAnPAGnO0LMWgHTegDaAhHQKsSeg4ffXR1fZQoaAZHQJcpOJiy6c1oB03oA2gIR0CrEpAeRxLkdX2UKGgGR0CfpyCeVcD9aAdN6ANoCEdAqxYx3os7MnV9lChoBkdAmcCcERrad2gHTegDaAhHQKsgpB/I8yN1fZQoaAZHQJlGGltTDO1oB03oA2gIR0CrIXV5jYqYdX2UKGgGR0CceM5EMLF5aAdN6ANoCEdAqyGN+ocaO3V9lChoBkdAlX25+hGpdmgHTegDaAhHQKskyp3os7N1fZQoaAZHQJ2Yju1F6RhoB03oA2gIR0CrLaJQLux9dX2UKGgGR0CfJmbNr0rcaAdN6ANoCEdAqy52aOPvKHV9lChoBkdAi9PfiPyTZGgHTegDaAhHQKsujVI7Njd1fZQoaAZHQKAX8bxVhkRoB03oA2gIR0CrMprGJemfdX2UKGgGR0CdWrylenhsaAdN6ANoCEdAqzzDHuJDV3V9lChoBkdAnXM+HSF492gHTegDaAhHQKs9ljvNNah1fZQoaAZHQJ3whTl1bJRoB03oA2gIR0CrPa7NB4UvdX2UKGgGR0CeMXQNkOI7aAdN6ANoCEdAq0DCuuA7P3V9lChoBkdAnyDLMxGlRGgHTegDaAhHQKtJmoXKr7x1fZQoaAZHQIsBtV1fVqhoB03oA2gIR0CrSnDzAeq8dX2UKGgGR0CYzA1WsA/+aAdN6ANoCEdAq0qH+l0o0HV9lChoBkdAlQndwFTvRmgHTegDaAhHQKtPDn2ZiNN1fZQoaAZHQJrz5AeJYT1oB03oA2gIR0CrWLldkauPdX2UKGgGR0CdeqgXuVopaAdN6ANoCEdAq1mQsVclgXV9lChoBkdAmo6WSMcZL2gHTegDaAhHQKtZqAMlTm51fZQoaAZHQJ046hoM8YBoB03oA2gIR0CrXMCaiKzidX2UKGgGR0CeU1/iHZbqaAdN6ANoCEdAq2WWTPjXF3V9lChoBkdAk/Yjghr302gHTegDaAhHQKtmtTNt65Z1fZQoaAZHQJ37e26TW5JoB03oA2gIR0CrZtbGm1pkdX2UKGgGR0Ca0ZUiILw4aAdN6ANoCEdAq2t3/zasZHV9lChoBkdAmRQrjLjgh2gHTegDaAhHQKt07AnDziF1fZQoaAZHQJTTnj7yhBZoB03oA2gIR0CrdcOuzQeFdX2UKGgGR0CYnW+qzZ6EaAdN6ANoCEdAq3XeDtgKGHV9lChoBkdAlN2fPcBU72gHTegDaAhHQKt4/oHLRrt1fZQoaAZHQJuMHFERaoxoB03oA2gIR0CrgkwAMlTndX2UKGgGR0CcVM3B55Z9aAdN6ANoCEdAq4N9qSHM2XV9lChoBkdAnSBCv9tMwmgHTegDaAhHQKuDoglnh891fZQoaAZHQJ4ixZvDP4VoB03oA2gIR0CriDV4Pf8/dX2UKGgGR0CeSKxRVIZqaAdN6ANoCEdAq5DtK28Zk3V9lChoBkdAnZAlKCg9NmgHTegDaAhHQKuRvujRD1J1fZQoaAZHQKBQ2AMlTm5oB03oA2gIR0CrkdXrdFfBdX2UKGgGR0CeXkIqbz9TaAdN6ANoCEdAq5T7VSXMQnV9lChoBkdAn0tOfdyksWgHTegDaAhHQKueimWt2cJ1fZQoaAZHQJ8nn8sMAm1oB03oA2gIR0Crn7i+10DEdX2UKGgGR0CfvrffoA4oaAdN6ANoCEdAq5/cKsuFpXV9lChoBkdAn7S3rY5DJGgHTegDaAhHQKuj9zLfUF11fZQoaAZHQKBTmfCAMDxoB03oA2gIR0CrrKn7xd6cdX2UKGgGR0CfqlSL61staAdN6ANoCEdAq61+3+dbxHV9lChoBkdAoNzbzK9wm2gHTegDaAhHQKutlo6CDmN1fZQoaAZHQKB73ZPl+3JoB03oA2gIR0CrsL0kOZssdX2UKGgGR0CecMW8yvcKaAdN6ANoCEdAq7pzXQMQVnV9lChoBkdAm3/Pj0cwQGgHTegDaAhHQKu7s3o9s8B1fZQoaAZHQJ72R8YyfthoB03oA2gIR0Cru9cvEjxDdX2UKGgGR0CQfhHpbD/EaAdN6ANoCEdAq7+0Pz4DcXV9lChoBkdAoBejEaVD8mgHTegDaAhHQKvIZyo4uK51fZQoaAZHQKCOL2ovSMNoB03oA2gIR0CryTe98JD3dX2UKGgGR0Ce3jv4/NaAaAdN6ANoCEdAq8lOOhkAgnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b3b321fe7fb74ef5051894595f3dca868ac18aef4099a995115993e6bc6ed4a
|
3 |
+
size 1056441
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2083.2089100520943, "std_reward": 52.78580602432708, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-20T13:39:56.252121"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c78d646ba79826ca89bbee421831daacf414947ee988047981f72300bba1829
|
3 |
+
size 2176
|