YanSte commited on
Commit
5e825ea
1 Parent(s): 5686f43

Upload model

Browse files
Files changed (3) hide show
  1. README.md +188 -22
  2. adapter_config.json +31 -0
  3. adapter_model.safetensors +3 -0
README.md CHANGED
@@ -1,38 +1,204 @@
1
  ---
2
- license: cc
3
- datasets:
4
- - databricks/databricks-dolly-15k
5
- - vicgalle/alpaca-gpt4
6
- pipeline_tag: text-generation
7
  ---
8
- # | NLP | LLM | Fine-tuning 2024 | Llama 2 QLoRA |
9
 
10
- ## Natural Language Processing (NLP) and Large Language Models (LLM) with Fine-Tuning LLM Llama 2 with QLoRA in 2024
11
 
12
- ![Learning](https://t3.ftcdn.net/jpg/06/14/01/52/360_F_614015247_EWZHvC6AAOsaIOepakhyJvMqUu5tpLfY.jpg)
13
 
14
- # <b><span style='color:#78D118'>|</span> Overview</b>
15
 
16
- In this notebook we're going to Fine-Tuning LLM:
17
 
18
- <img src="https://github.com/YanSte/NLP-LLM-Fine-tuning-Trainer/blob/main/img_2.png?raw=true" alt="Learning" width="50%">
19
 
20
- Many LLMs are general purpose models trained on a broad range of data and use cases. This enables them to perform well in a variety of applications, as shown in previous modules. It is not uncommon though to find situations where applying a general purpose model performs unacceptably for specific dataset or use case. This often does not mean that the general purpose model is unusable. Perhaps, with some new data and additional training the model could be improved, or fine-tuned, such that it produces acceptable results for the specific use case.
21
 
22
- <img src="https://github.com/YanSte/NLP-LLM-Fine-tuning-Trainer/blob/main/img_1.png?raw=true" alt="Learning" width="50%">
23
 
24
- Fine-tuning uses a pre-trained model as a base and continues to train it with a new, task targeted dataset. Conceptually, fine-tuning leverages that which has already been learned by a model and aims to focus its learnings further for a specific task.
25
 
26
- It is important to recognize that fine-tuning is model training. The training process remains a resource intensive, and time consuming effort. Albeit fine-tuning training time is greatly shortened as a result of having started from a pre-trained model.
27
 
28
- <img src="https://github.com/YanSte/NLP-LLM-Fine-tuning-Trainer/blob/main/img_3.png?raw=true" alt="Learning" width="50%">
 
 
 
 
 
 
29
 
30
- [Kaggle](https://www.kaggle.com/yannicksteph/nlp-llm-fine-tuning-2024-llama-2-qlora/)
31
 
32
- ## Learning Objectives
33
 
34
- By the end of this notebook, you will gain expertise in the following areas:
 
 
35
 
36
- 1. Learn how to effectively prepare datasets for training.
37
- 2. Few shots learning
38
- 3. Understand the process of fine-tuning the Llama 2 on QLoRA with SFTTrainer in 2024.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-chat-hf
 
 
 
4
  ---
 
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 8,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "down_proj",
24
+ "q_proj",
25
+ "o_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "up_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bb6304be4e14c802183a27e329e1f95c8fa8551a77c5186c4f59cc48ff12139
3
+ size 80013568