YanJiangJerry's picture
update model card README.md
13c53fc
metadata
license: mit
base_model: digitalepidemiologylab/covid-twitter-bert-v2
tags:
  - generated_from_trainer
metrics:
  - f1
  - recall
  - precision
model-index:
  - name: covid_bert-e3-b16-v2-w0.01-dev1
    results: []

covid_bert-e3-b16-v2-w0.01-dev1

This model is a fine-tuned version of digitalepidemiologylab/covid-twitter-bert-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9608
  • F1: 0.7913
  • Recall: 0.7913
  • Precision: 0.7913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Recall Precision
0.8059 1.0 753 0.6912 0.7558 0.7558 0.7558
0.5563 2.0 1506 0.7618 0.7804 0.7804 0.7804
0.3678 3.0 2259 0.9608 0.7913 0.7913 0.7913

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3