YanJiangJerry's picture
update model card README.md
eb1021a
|
raw
history blame
1.63 kB
metadata
license: mit
base_model: digitalepidemiologylab/covid-twitter-bert-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: covid-twitter-bert-v2_1_4_2e-05_0.01
    results: []

covid-twitter-bert-v2_1_4_2e-05_0.01

This model is a fine-tuned version of digitalepidemiologylab/covid-twitter-bert-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1675
  • Accuracy: 0.9659
  • F1: 0.9117
  • Precision: 0.8761
  • Recall: 0.9502

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2014 1.0 1629 0.1675 0.9659 0.9117 0.8761 0.9502

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3