YC-Chen commited on
Commit
c71adbf
1 Parent(s): af375fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md CHANGED
@@ -5,6 +5,7 @@ language:
5
  - en
6
  pipeline_tag: text-generation
7
  ---
 
8
  # GGUF: Breeze-7B-Instruct-v1_0
9
 
10
  Use [llama.cpp](https://github.com/ggerganov/llama.cpp) to convert [Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) into 3 gguf models.
@@ -31,3 +32,61 @@ Use [llama.cpp](https://github.com/ggerganov/llama.cpp) to convert [Breeze-7B-In
31
  4. Choose the right model/preset and start conversation
32
 
33
  ![](misc/lmstudio_3.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - en
6
  pipeline_tag: text-generation
7
  ---
8
+
9
  # GGUF: Breeze-7B-Instruct-v1_0
10
 
11
  Use [llama.cpp](https://github.com/ggerganov/llama.cpp) to convert [Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) into 3 gguf models.
 
32
  4. Choose the right model/preset and start conversation
33
 
34
  ![](misc/lmstudio_3.png)
35
+
36
+ ## How to locally use those models by Python codes
37
+
38
+ 1. Install [ctransformers](https://github.com/marella/ctransformers)
39
+
40
+ Run one of the following commands, according to your system:
41
+
42
+ ```
43
+ # Base ctransformers with no GPU acceleration
44
+ pip install ctransformers
45
+ # Or with CUDA GPU acceleration
46
+ pip install ctransformers[cuda]
47
+ # Or with AMD ROCm GPU acceleration (Linux only)
48
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
49
+ # Or with Metal GPU acceleration for macOS systems only
50
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
51
+ ```
52
+
53
+ 2. Simple code
54
+
55
+ ```python
56
+ from ctransformers import AutoModelForCausalLM
57
+
58
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
59
+ llm = AutoModelForCausalLM.from_pretrained(
60
+ "YC-Chen/Breeze-7B-Instruct-v1_0-GGUF",
61
+ model_file="breeze-7b-instruct-v1_0-q6_k.gguf",
62
+ model_type="mistral",
63
+ context_length=8000,
64
+ gpu_layers=50)
65
+
66
+ from transformers import AutoTokenizer
67
+ tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v1_0")
68
+
69
+ gen_kwargs = dict(
70
+ max_new_tokens=1024,
71
+ repetition_penalty=1.1,
72
+ stop=["[INST]"],
73
+ temperature=0.0,
74
+ top_p=0.0,
75
+ top_k=1,
76
+ )
77
+
78
+ chat = [
79
+ {"role": "system", "content": "You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan."},
80
+ {"role": "user", "content": "請介紹五樣台灣小吃"}
81
+ ]
82
+ for text in llm(tokenizer.apply_chat_template(chat, tokenize=False), stream=True, **gen_kwargs):
83
+ print(text, end="", flush=True)
84
+
85
+ # 以下推薦五樣台灣的小吃:
86
+ #
87
+ # 1. 蚵仔煎 (Oyster omelette) - 蚵仔煎是一種以蛋、麵皮和蚵仔為主要食材的傳統美食。它通常在油鍋中煎至金黃色,外酥內嫩,並帶有一股獨特的香氣。蚵仔煎是一道非常受歡迎的小吃,經常可以在夜市或小吃店找到。
88
+ # 2. 牛肉麵 (Beef noodle soup) - 牛肉麵是台灣的經典美食之一,它以軟嫩的牛肉和濃郁的湯頭聞名。不同地區的牛肉麵可能有不同的口味和配料,但通常都會包含麵條、牛肉、蔬菜和調味料。牛肉麵在全台灣都有不少知名店家,例如林東芳牛肉麵、牛大哥牛肉麵等。
89
+ # 3. 鹹酥雞 (Fried chicken) - 鹹酥雞是一種以雞肉為主要食材的快餐。它通常會經過油炸處理,然後搭配多種蔬菜和調味料。鹹酥雞的口味因地區而異,但通常都會有辣、甜、鹹等不同風味。鹹酥雞經常可以在夜市或路邊攤找到,例如鼎王鹹酥雞、鹹酥G去等知名店家。
90
+ # 4. 珍珠奶茶 (Bubble tea) - 珍珠奶茶是一種以紅茶為基底的飲品,加入珍珠(Q彈的小湯圓)和鮮奶。它起源於台灣,並迅速成為全球流行的飲料。珍珠奶茶在全台灣都有不少知名品牌,例如茶湯會、五桐號等。
91
+ # 5. 臭豆腐 (Stinky tofu) - 臭豆腐是一種以發酵豆腐為原料製作的傳統小吃。它具有強烈的氣味,但味道獨特且深受台灣人喜愛。臭豆腐通常會搭配多種調味料和配料,例如辣椒醬、蒜泥、酸菜等。臭豆腐在全台灣都有不少知名店家,例如阿宗麵線、大勇街臭豆腐等。
92
+ ```