bert-chn-classifier / README.md
XvKuoMing's picture
End of training
769acdc verified
|
raw
history blame
1.75 kB
metadata
base_model: ai-forever/ruBert-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bert-chn-classifier
    results: []

bert-chn-classifier

This model is a fine-tuned version of ai-forever/ruBert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2343
  • Accuracy: 0.9595
  • Precision: 0.9595
  • Recall: 0.9595
  • F1: 0.9595

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2249 1.0 4381 0.1770 0.9513 0.9513 0.9513 0.9513
0.1078 2.0 8762 0.1951 0.9571 0.9571 0.9571 0.9571
0.0234 3.0 13143 0.2343 0.9595 0.9595 0.9595 0.9595

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1