XiaoduoAILab commited on
Commit
9139a3d
·
verified ·
1 Parent(s): 3d3d450

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md CHANGED
@@ -6,3 +6,111 @@ We introduce Xmodel-VLM, a cutting-edge multimodal vision language model. It is
6
  Our work directly confronts a pivotal industry issue by grappling with the prohibitive service costs that hinder the broad adoption of large-scale multimodal systems.
7
 
8
  Refer to [our paper](https://arxiv.org/pdf/2405.09215) and [github](https://github.com/XiaoduoAILab/XmodelVLM) for more details!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  Our work directly confronts a pivotal industry issue by grappling with the prohibitive service costs that hinder the broad adoption of large-scale multimodal systems.
7
 
8
  Refer to [our paper](https://arxiv.org/pdf/2405.09215) and [github](https://github.com/XiaoduoAILab/XmodelVLM) for more details!
9
+
10
+ To use Xmodel_VLM for the inference, all you need to do is to input a few lines of codes as demonstrated below. **However, please make sure that you are using the latest code and related virtual environments.**
11
+
12
+ ## Inference example
13
+ ```
14
+ import sys
15
+ import torch
16
+ import argparse
17
+ from PIL import Image
18
+ from pathlib import Path
19
+ import time
20
+ sys.path.append(str(Path(__file__).parent.parent.resolve()))
21
+
22
+ from xmodelvlm.model.xmodelvlm import load_pretrained_model
23
+ from xmodelvlm.conversation import conv_templates, SeparatorStyle
24
+ from xmodelvlm.utils import disable_torch_init, process_images, tokenizer_image_token, KeywordsStoppingCriteria
25
+ from xmodelvlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
26
+
27
+ def inference_once(args):
28
+ disable_torch_init()
29
+ model_name = args.model_path.split('/')[-1]
30
+ tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.load_8bit, args.load_4bit)
31
+
32
+ images = [Image.open(args.image_file).convert("RGB")]
33
+ images_tensor = process_images(images, image_processor, model.config).to(model.device, dtype=torch.float16)
34
+
35
+ conv = conv_templates[args.conv_mode].copy()
36
+ conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + args.prompt)
37
+ conv.append_message(conv.roles[1], None)
38
+ prompt = conv.get_prompt()
39
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
40
+ # Input
41
+ input_ids = (tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda())
42
+ stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids)
43
+ # Inference
44
+ with torch.inference_mode():
45
+ start_time = time.time()
46
+ output_ids = model.generate(
47
+ input_ids,
48
+ images=images_tensor,
49
+ do_sample=True if args.temperature > 0 else False,
50
+ temperature=args.temperature,
51
+ top_p=args.top_p,
52
+ num_beams=args.num_beams,
53
+ max_new_tokens=args.max_new_tokens,
54
+ use_cache=True,
55
+ stopping_criteria=[stopping_criteria],
56
+ )
57
+ end_time = time.time()
58
+ execution_time = end_time-start_time
59
+ print("the execution time (secend): ", execution_time)
60
+ # Result-Decode
61
+ input_token_len = input_ids.shape[1]
62
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
63
+ if n_diff_input_output > 0:
64
+ print(f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids")
65
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
66
+ outputs = outputs.strip()
67
+ if outputs.endswith(stop_str):
68
+ outputs = outputs[: -len(stop_str)]
69
+ print(f"🚀 {model_name}: {outputs.strip()}\n")
70
+ if __name__ == '__main__':
71
+ model_path = "XiaoduoAILab/Xmodel_VLM" # model weight file
72
+ image_file = "assets/demo.jpg" # image file
73
+ prompt_str = "Who is the author of this book?\nAnswer the question using a single word or phrase."
74
+ # (or) What is the title of this book?
75
+ # (or) Is this book related to Education & Teaching?
76
+
77
+ args = type('Args', (), {
78
+ "model_path": model_path,
79
+ "image_file": image_file,
80
+ "prompt": prompt_str,
81
+ "conv_mode": "v1",
82
+ "temperature": 0,
83
+ "top_p": None,
84
+ "num_beams": 1,
85
+ "max_new_tokens": 512,
86
+ "load_8bit": False,
87
+ "load_4bit": False,
88
+ })()
89
+
90
+ inference_once(args)
91
+ ```
92
+ <p align="center">
93
+ <textarea>Who is the author of this book?\nAnswer the question using a single word or phrase. </textarea>
94
+ <img src="https://github.com/XiaoduoAILab/XmodelVLM/blob/main/assets/demo.jpg" width="500"/>
95
+ <textarea>Susan Wise Bauer</textarea>
96
+ <p>
97
+ <br>
98
+
99
+ ## Evaluation
100
+
101
+ We evaluate the multimodal performance across a variety of datasets: VizWiz, SQA$^\text{I}$, VQA$^\text{T}$, POPE, GQA, MMB, MMB$^\text{CN}$
102
+ , MM-Vet, and MME. Our analysis, as depicted in Table~\ref{tab:compare-with-sotas-vlms}.
103
+
104
+ | Method | LLM | Res. | VizWiz | SQA | VQA | POPE | GQA | MMB | MMB^{CN} | MM-Vet | MME |
105
+ |:--------------:|:----------------:|:----:|:------:|:----:|:----:|:----:|:----:|:----:|:--------:|:------:|:------:|
106
+ | Openflamingo | MPT-7B | 336 | - | - | 33.6 | - | - | 4.6 | - | - | - |
107
+ | BLIP-2 | Vicuna-13B | 224 | - | 61.0 | 42.5 | 85.3 | 41.0 | - | - | - | 1293.8 |
108
+ | MiniGPT-4 | Vicuna-7B | 224 | - | - | - | - | 32.2 | 23.0 | - | - | 581.7 |
109
+ | InstructBLIP | Vicuna-7B | 224 | - | 60.5 | 50.1 | - | 49.2 | - | - | - | - |
110
+ | InstructBLIP | Vicuna-13B | 224 | - | 63.1 | 50.7 | 78.9 | 49.5 | - | - | - | 1212.8 |
111
+ | Shikra | Vicuna-13B | 224 | - | - | - | - | - | 58.8 | - | - | - |
112
+ | Qwen-VL | Qwen-7B | 448 | - | 67.1 | 63.8 | - | 59.3 | 38.2 | - | - | 1487.6 |
113
+ | MiniGPT-v2 | LLaMA-7B | 448 | - | - | - | - | 60.3 | 12.2 | - | - | - |
114
+ | LLaVA-v1.5-13B | Vicuna-13B | 336 | 53.6 | 71.6 | 61.3 | 85.9 | 63.3 | 67.7 | 63.6 | 35.4 | 1531.3 |
115
+ | MobileVLM 1.7 | MobileLLaMA 1.4B | 336 | 26.3 | 54.7 | 41.5 | 84.5 | 56.1 | 53.2 | 16.67 | 21.7 | 1196.2 |
116
+ | Xmodel-VLM | Xmodel-LM 1.1B | 336 | 41.7 | 53.3 | 39.9 | 85.9 | 58.3 | 52.0 | 45.7 | 21.8 | 1250.7 |