metadata
base_model: CIDAS/clipseg-rd64
library_name: transformers.js
tags:
- vision
- image-segmentation
https://huggingface.co/CIDAS/clipseg-rd64 with ONNX weights to be compatible with Transformers.js.
Usage (Transformers.js)
If you haven't already, you can install the Transformers.js JavaScript library from NPM using:
npm i @xenova/transformers
Example: Perform zero-shot image segmentation with a CLIPSegForImageSegmentation
model.
import { AutoTokenizer, AutoProcessor, CLIPSegForImageSegmentation, RawImage } from '@xenova/transformers';
// Load tokenizer, processor, and model
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clipseg-rd64');
const processor = await AutoProcessor.from_pretrained('Xenova/clipseg-rd64');
const model = await CLIPSegForImageSegmentation.from_pretrained('Xenova/clipseg-rd64');
// Run tokenization
const texts = ['a glass', 'something to fill', 'wood', 'a jar'];
const text_inputs = tokenizer(texts, { padding: true, truncation: true });
// Read image and run processor
const image = await RawImage.read('https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true');
const image_inputs = await processor(image);
// Run model with both text and pixel inputs
const { logits } = await model({ ...text_inputs, ...image_inputs });
// logits: Tensor {
// dims: [4, 352, 352],
// type: 'float32',
// data: Float32Array(495616)[ ... ],
// size: 495616
// }
You can visualize the predictions as follows:
// Visualize images
const preds = logits
.unsqueeze_(1)
.sigmoid_()
.mul_(255)
.round_()
.to('uint8');
for (let i = 0; i < preds.dims[0]; ++i) {
const img = RawImage.fromTensor(preds[i]);
img.save(`prediction_${i}.png`);
}
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx
).