clipseg-rd64 / README.md
Xenova's picture
Xenova HF staff
[Automated] Update base model metadata
bcedcd1 verified
metadata
base_model: CIDAS/clipseg-rd64
library_name: transformers.js
tags:
  - vision
  - image-segmentation

https://huggingface.co/CIDAS/clipseg-rd64 with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

Example: Perform zero-shot image segmentation with a CLIPSegForImageSegmentation model.

import { AutoTokenizer, AutoProcessor, CLIPSegForImageSegmentation, RawImage } from '@xenova/transformers';

// Load tokenizer, processor, and model
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clipseg-rd64');
const processor = await AutoProcessor.from_pretrained('Xenova/clipseg-rd64');
const model = await CLIPSegForImageSegmentation.from_pretrained('Xenova/clipseg-rd64');

// Run tokenization
const texts = ['a glass', 'something to fill', 'wood', 'a jar'];
const text_inputs = tokenizer(texts, { padding: true, truncation: true });

// Read image and run processor
const image = await RawImage.read('https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true');
const image_inputs = await processor(image);

// Run model with both text and pixel inputs
const { logits } = await model({ ...text_inputs, ...image_inputs });
// logits: Tensor {
//   dims: [4, 352, 352],
//   type: 'float32',
//   data: Float32Array(495616)[ ... ],
//   size: 495616
// }

You can visualize the predictions as follows:

// Visualize images
const preds = logits
  .unsqueeze_(1)
  .sigmoid_()
  .mul_(255)
  .round_()
  .to('uint8');

for (let i = 0; i < preds.dims[0]; ++i) {
  const img = RawImage.fromTensor(preds[i]);
  img.save(`prediction_${i}.png`);
}
Original "a glass" "something to fill" "wood" "a jar"
image prediction_0 prediction_1 prediction_2 prediction_3

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).