|
--- |
|
base_model: laion/clap-htsat-unfused |
|
library_name: transformers.js |
|
tags: |
|
- zero-shot-audio-classification |
|
--- |
|
|
|
https://huggingface.co/laion/clap-htsat-unfused with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Perform zero-shot audio classification with `Xenova/clap-htsat-unfused`. |
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
const classifier = await pipeline('zero-shot-audio-classification', 'Xenova/clap-htsat-unfused'); |
|
|
|
const audio = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/dog_barking.wav'; |
|
const candidate_labels = ['dog', 'vaccum cleaner']; |
|
const scores = await classifier(audio, candidate_labels); |
|
// [ |
|
// { score: 0.9993992447853088, label: 'dog' }, |
|
// { score: 0.0006007603369653225, label: 'vaccum cleaner' } |
|
// ] |
|
``` |
|
|
|
**Example:** Compute text embeddings with `ClapTextModelWithProjection`. |
|
|
|
```js |
|
import { AutoTokenizer, ClapTextModelWithProjection } from '@xenova/transformers'; |
|
|
|
// Load tokenizer and text model |
|
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clap-htsat-unfused'); |
|
const text_model = await ClapTextModelWithProjection.from_pretrained('Xenova/clap-htsat-unfused'); |
|
|
|
// Run tokenization |
|
const texts = ['a sound of a cat', 'a sound of a dog']; |
|
const text_inputs = tokenizer(texts, { padding: true, truncation: true }); |
|
|
|
// Compute embeddings |
|
const { text_embeds } = await text_model(text_inputs); |
|
// Tensor { |
|
// dims: [ 2, 512 ], |
|
// type: 'float32', |
|
// data: Float32Array(1024) [ ... ], |
|
// size: 1024 |
|
// } |
|
``` |
|
|
|
**Example:** Compute audio embeddings with `ClapAudioModelWithProjection`. |
|
```js |
|
import { AutoProcessor, ClapAudioModelWithProjection, read_audio } from '@xenova/transformers'; |
|
|
|
// Load processor and audio model |
|
const processor = await AutoProcessor.from_pretrained('Xenova/clap-htsat-unfused'); |
|
const audio_model = await ClapAudioModelWithProjection.from_pretrained('Xenova/clap-htsat-unfused'); |
|
|
|
// Read audio and run processor |
|
const audio = await read_audio('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cat_meow.wav'); |
|
const audio_inputs = await processor(audio); |
|
|
|
// Compute embeddings |
|
const { audio_embeds } = await audio_model(audio_inputs); |
|
// Tensor { |
|
// dims: [ 1, 512 ], |
|
// type: 'float32', |
|
// data: Float32Array(512) [ ... ], |
|
// size: 512 |
|
// } |
|
``` |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |