|
--- |
|
library_name: transformers.js |
|
--- |
|
|
|
https://huggingface.co/BAAI/bge-large-en-v1.5 with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
You can then use the model to compute embeddings, as follows: |
|
|
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
// Create a feature-extraction pipeline |
|
const extractor = await pipeline('feature-extraction', 'Xenova/bge-large-en-v1.5'); |
|
|
|
// Compute sentence embeddings |
|
const texts = [ 'Hello world.', 'Example sentence.']; |
|
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); |
|
console.log(embeddings); |
|
// Tensor { |
|
// dims: [ 2, 1024 ], |
|
// type: 'float32', |
|
// data: Float32Array(2048) [ 0.03169844672083855, 0.011085662990808487, ... ], |
|
// size: 2048 |
|
// } |
|
|
|
console.log(embeddings.tolist()); // Convert embeddings to a JavaScript list |
|
// [ |
|
// [ 0.03169844672083855, 0.011085662990808487, 0.030054178088903427, ... ], |
|
// [ 0.009418969973921776, -0.024539148434996605, 0.036459196358919144, ... ] |
|
// ] |
|
``` |
|
|
|
You can also use the model for retrieval. For example: |
|
```js |
|
import { pipeline, cos_sim } from '@xenova/transformers'; |
|
|
|
// Create a feature-extraction pipeline |
|
const extractor = await pipeline('feature-extraction', 'Xenova/bge-large-en-v1.5'); |
|
|
|
// List of documents you want to embed |
|
const texts = [ |
|
'Hello world.', |
|
'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.', |
|
'I love pandas so much!', |
|
]; |
|
|
|
// Compute sentence embeddings |
|
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); |
|
|
|
// Prepend recommended query instruction for retrieval. |
|
const query_prefix = 'Represent this sentence for searching relevant passages: ' |
|
const query = query_prefix + 'What is a panda?'; |
|
const query_embeddings = await extractor(query, { pooling: 'mean', normalize: true }); |
|
|
|
// Sort by cosine similarity score |
|
const scores = embeddings.tolist().map( |
|
(embedding, i) => ({ |
|
id: i, |
|
score: cos_sim(query_embeddings.data, embedding), |
|
text: texts[i], |
|
}) |
|
).sort((a, b) => b.score - a.score); |
|
console.log(scores); |
|
// [ |
|
// { id: 1, score: 0.7671812872502833, text: 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.' }, |
|
// { id: 2, score: 0.7219157959783322, text: 'I love pandas so much!' }, |
|
// { id: 0, score: 0.5109676329796601, text: 'Hello world.' } |
|
// ] |
|
``` |
|
|
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |