Upload folder using huggingface_hub
Browse files- README.md +62 -0
- config.json +32 -0
- final_checkpoint/README.md +204 -0
- final_checkpoint/adapter_config.json +33 -0
- final_checkpoint/adapter_model.safetensors +3 -0
- final_checkpoint/special_tokens_map.json +29 -0
- final_checkpoint/tokenizer.json +0 -0
- final_checkpoint/tokenizer.model +3 -0
- final_checkpoint/tokenizer_config.json +50 -0
- generation_config.json +7 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +426 -0
- results_arc.json +68 -0
- results_gsm8k.json +88 -0
- results_hellaswag.json +66 -0
- results_mmlu.json +2649 -0
- results_truthfulqa.json +60 -0
- results_winogrande.json +57 -0
- special_tokens_map.json +35 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +50 -0
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- mistral
|
7 |
+
- Oasis
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
---
|
10 |
+
# Model Card for Oasis
|
11 |
+
|
12 |
+
Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020).
|
13 |
+
|
14 |
+
## Results
|
15 |
+
|
16 |
+
| model_name | Average | arc_challenge | gsm8k | hellaswag | mmlu | truthfulqa_mc2 | winogrande |
|
17 |
+
|:-------------|----------:|----------------:|---------:|------------:|---------:|-----------------:|-------------:|
|
18 |
+
| Oasis | 0.701904 | 0.613481 | 0.741471 | 0.848337 | 0.639652 | 0.602897 | 0.765588 |
|
19 |
+
|
20 |
+
## Instruction format
|
21 |
+
|
22 |
+
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
|
23 |
+
|
24 |
+
|
25 |
+
E.g.
|
26 |
+
```
|
27 |
+
text = "<s>[INST] What is your favourite condiment? [/INST]"
|
28 |
+
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
29 |
+
"[INST] Do you have mayonnaise recipes? [/INST]"
|
30 |
+
```
|
31 |
+
|
32 |
+
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
+
|
37 |
+
device = "cuda" # the device to load the model onto
|
38 |
+
|
39 |
+
model = AutoModelForCausalLM.from_pretrained("Xenon1/Oasis")
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("Xenon1/Oasis")
|
41 |
+
|
42 |
+
messages = [
|
43 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
44 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
45 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
46 |
+
]
|
47 |
+
|
48 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
49 |
+
|
50 |
+
model_inputs = encodeds.to(device)
|
51 |
+
model.to(device)
|
52 |
+
|
53 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
54 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
55 |
+
print(decoded[0])
|
56 |
+
```
|
57 |
+
|
58 |
+
## Model Architecture
|
59 |
+
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
|
60 |
+
- Grouped-Query Attention
|
61 |
+
- Sliding-Window Attention
|
62 |
+
- Byte-fallback BPE tokenizer
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 2,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"pad_token_id": 2,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_theta": 10000.0,
|
24 |
+
"router_aux_loss_coef": 0.001,
|
25 |
+
"sliding_window": null,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "float16",
|
28 |
+
"transformers_version": "4.37.1",
|
29 |
+
"unsloth_version": "2024.1",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 32000
|
32 |
+
}
|
final_checkpoint/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: /lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.7.2.dev0
|
final_checkpoint/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 16,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"q_proj",
|
23 |
+
"k_proj",
|
24 |
+
"o_proj",
|
25 |
+
"w2",
|
26 |
+
"w3",
|
27 |
+
"w1",
|
28 |
+
"gate",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
final_checkpoint/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e144f6bac406877bf2b8c4f70ea7497d9332a902fd515f70973ec7711126792
|
3 |
+
size 144806848
|
final_checkpoint/special_tokens_map.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<s>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": "</s>",
|
22 |
+
"unk_token": {
|
23 |
+
"content": "<unk>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
}
|
29 |
+
}
|
final_checkpoint/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final_checkpoint/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
final_checkpoint/tokenizer_config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [
|
31 |
+
"<unk>",
|
32 |
+
"<s>",
|
33 |
+
"</s>"
|
34 |
+
],
|
35 |
+
"bos_token": "<s>",
|
36 |
+
"clean_up_tokenization_spaces": false,
|
37 |
+
"eos_token": "</s>",
|
38 |
+
"legacy": true,
|
39 |
+
"max_length": null,
|
40 |
+
"model_max_length": 255,
|
41 |
+
"pad_to_multiple_of": null,
|
42 |
+
"pad_token": "</s>",
|
43 |
+
"pad_token_type_id": 0,
|
44 |
+
"padding_side": "left",
|
45 |
+
"sp_model_kwargs": {},
|
46 |
+
"spaces_between_special_tokens": false,
|
47 |
+
"tokenizer_class": "LlamaTokenizer",
|
48 |
+
"unk_token": "<unk>",
|
49 |
+
"use_default_system_prompt": true
|
50 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 2,
|
6 |
+
"transformers_version": "4.37.1"
|
7 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d39bd775c8c4cd31b796e15441ab3aadaf34a7ff96349d52f5e3bf450f2c562b
|
3 |
+
size 4993525184
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff5892d62b79220b26943795b7e00e8399d1941dc4446bb1ac8c3617fbbaf14f
|
3 |
+
size 4932724792
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:784a76f90f5233dd16e1c21605425f43717e6b7e821aff333fae2b51040a8eb1
|
3 |
+
size 4966262448
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9ab92f10c3882e57088bb020b6b40fdf7bfe8f78a8648886a467496baf75303
|
3 |
+
size 4966262448
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa65a19a07c990e7c1477f7cd7bb3d3c397513f42348e9e72ed7b7327c147e1c
|
3 |
+
size 4932741456
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:839ddf0d959179cd83c1d2c8550f333a3e3a61c6df052e1dfcd789d2acc291a5
|
3 |
+
size 966812864
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 25758277632
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00006.safetensors",
|
27 |
+
"model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
29 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
30 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
31 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
32 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
33 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
34 |
+
"model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.10.block_sparse_moe.gate.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.11.block_sparse_moe.gate.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00006.safetensors",
|
62 |
+
"model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00006.safetensors",
|
63 |
+
"model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00006.safetensors",
|
64 |
+
"model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00006.safetensors",
|
65 |
+
"model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"model.layers.12.block_sparse_moe.gate.weight": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
68 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
69 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
72 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
73 |
+
"model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00006.safetensors",
|
79 |
+
"model.layers.13.block_sparse_moe.gate.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.14.block_sparse_moe.gate.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.15.block_sparse_moe.gate.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00006.safetensors",
|
117 |
+
"model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00006.safetensors",
|
118 |
+
"model.layers.16.block_sparse_moe.gate.weight": "model-00003-of-00006.safetensors",
|
119 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
120 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
121 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
122 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
123 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
124 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
125 |
+
"model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.17.block_sparse_moe.gate.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00006.safetensors",
|
142 |
+
"model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00006.safetensors",
|
143 |
+
"model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.18.block_sparse_moe.gate.weight": "model-00003-of-00006.safetensors",
|
145 |
+
"model.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
146 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
147 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
148 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00006.safetensors",
|
152 |
+
"model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.19.block_sparse_moe.gate.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.19.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00006.safetensors",
|
165 |
+
"model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00006.safetensors",
|
166 |
+
"model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00006.safetensors",
|
167 |
+
"model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00006.safetensors",
|
168 |
+
"model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00006.safetensors",
|
169 |
+
"model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00006.safetensors",
|
170 |
+
"model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00006.safetensors",
|
171 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
172 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
173 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
174 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
175 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
176 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
177 |
+
"model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.20.block_sparse_moe.gate.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.21.block_sparse_moe.gate.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.22.block_sparse_moe.gate.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
216 |
+
"model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00006.safetensors",
|
217 |
+
"model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00006.safetensors",
|
218 |
+
"model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00006.safetensors",
|
219 |
+
"model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00006.safetensors",
|
220 |
+
"model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00006.safetensors",
|
221 |
+
"model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00006.safetensors",
|
222 |
+
"model.layers.23.block_sparse_moe.gate.weight": "model-00004-of-00006.safetensors",
|
223 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
224 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
225 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
226 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
228 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
229 |
+
"model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00006.safetensors",
|
234 |
+
"model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.24.block_sparse_moe.gate.weight": "model-00004-of-00006.safetensors",
|
236 |
+
"model.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
239 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
240 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
241 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
242 |
+
"model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.25.block_sparse_moe.gate.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.25.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.26.block_sparse_moe.gate.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.26.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.27.block_sparse_moe.gate.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.28.block_sparse_moe.gate.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00006.safetensors",
|
297 |
+
"model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00006.safetensors",
|
298 |
+
"model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00006.safetensors",
|
299 |
+
"model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00006.safetensors",
|
300 |
+
"model.layers.29.block_sparse_moe.gate.weight": "model-00005-of-00006.safetensors",
|
301 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
306 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
307 |
+
"model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00006.safetensors",
|
308 |
+
"model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00006.safetensors",
|
309 |
+
"model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00006.safetensors",
|
310 |
+
"model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00006.safetensors",
|
311 |
+
"model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00006.safetensors",
|
312 |
+
"model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00006.safetensors",
|
313 |
+
"model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00006.safetensors",
|
314 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
315 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
316 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
317 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
318 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
319 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
320 |
+
"model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00006.safetensors",
|
321 |
+
"model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00006.safetensors",
|
322 |
+
"model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00006.safetensors",
|
323 |
+
"model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00006.safetensors",
|
324 |
+
"model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00006.safetensors",
|
325 |
+
"model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00006.safetensors",
|
326 |
+
"model.layers.30.block_sparse_moe.gate.weight": "model-00005-of-00006.safetensors",
|
327 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
328 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
329 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
330 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
331 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
332 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
333 |
+
"model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00006.safetensors",
|
334 |
+
"model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00006.safetensors",
|
335 |
+
"model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00006.safetensors",
|
336 |
+
"model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00006-of-00006.safetensors",
|
337 |
+
"model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00006-of-00006.safetensors",
|
338 |
+
"model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00006-of-00006.safetensors",
|
339 |
+
"model.layers.31.block_sparse_moe.gate.weight": "model-00005-of-00006.safetensors",
|
340 |
+
"model.layers.31.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
341 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
342 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
343 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
344 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
345 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
346 |
+
"model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00006.safetensors",
|
347 |
+
"model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00006.safetensors",
|
348 |
+
"model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00006.safetensors",
|
349 |
+
"model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00006.safetensors",
|
350 |
+
"model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00006.safetensors",
|
351 |
+
"model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00006.safetensors",
|
352 |
+
"model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00006.safetensors",
|
353 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
354 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
355 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
356 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
357 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
358 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
359 |
+
"model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00006.safetensors",
|
360 |
+
"model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00006.safetensors",
|
361 |
+
"model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00006.safetensors",
|
362 |
+
"model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00006.safetensors",
|
363 |
+
"model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00006.safetensors",
|
364 |
+
"model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00006.safetensors",
|
365 |
+
"model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00006.safetensors",
|
366 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
367 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
368 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
369 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
370 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
371 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
372 |
+
"model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00006.safetensors",
|
373 |
+
"model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00006.safetensors",
|
374 |
+
"model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00006.safetensors",
|
375 |
+
"model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00006.safetensors",
|
376 |
+
"model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00006.safetensors",
|
377 |
+
"model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00006.safetensors",
|
378 |
+
"model.layers.6.block_sparse_moe.gate.weight": "model-00002-of-00006.safetensors",
|
379 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
380 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
381 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
382 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
383 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
384 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
385 |
+
"model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00006.safetensors",
|
386 |
+
"model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00006.safetensors",
|
387 |
+
"model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00006.safetensors",
|
388 |
+
"model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00006.safetensors",
|
389 |
+
"model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00006.safetensors",
|
390 |
+
"model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00006.safetensors",
|
391 |
+
"model.layers.7.block_sparse_moe.gate.weight": "model-00002-of-00006.safetensors",
|
392 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
393 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
394 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
395 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
396 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
397 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
398 |
+
"model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00006.safetensors",
|
399 |
+
"model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00006.safetensors",
|
400 |
+
"model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00006.safetensors",
|
401 |
+
"model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00006.safetensors",
|
402 |
+
"model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00006.safetensors",
|
403 |
+
"model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00006.safetensors",
|
404 |
+
"model.layers.8.block_sparse_moe.gate.weight": "model-00002-of-00006.safetensors",
|
405 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
406 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
407 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
408 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
409 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
410 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
411 |
+
"model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00006.safetensors",
|
412 |
+
"model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00006.safetensors",
|
413 |
+
"model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00006.safetensors",
|
414 |
+
"model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00006.safetensors",
|
415 |
+
"model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00006.safetensors",
|
416 |
+
"model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00006.safetensors",
|
417 |
+
"model.layers.9.block_sparse_moe.gate.weight": "model-00002-of-00006.safetensors",
|
418 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
419 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
420 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
421 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
422 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
423 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
424 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
425 |
+
}
|
426 |
+
}
|
results_arc.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"arc_challenge": {
|
4 |
+
"acc,none": 0.5614334470989761,
|
5 |
+
"acc_stderr,none": 0.014500682618212865,
|
6 |
+
"acc_norm,none": 0.613481228668942,
|
7 |
+
"acc_norm_stderr,none": 0.014230084761910473,
|
8 |
+
"alias": "arc_challenge"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"arc_challenge": {
|
13 |
+
"task": "arc_challenge",
|
14 |
+
"group": [
|
15 |
+
"ai2_arc"
|
16 |
+
],
|
17 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/ai2_arc",
|
18 |
+
"dataset_name": "ARC-Challenge",
|
19 |
+
"training_split": "train",
|
20 |
+
"validation_split": "validation",
|
21 |
+
"test_split": "test",
|
22 |
+
"doc_to_text": "Question: {{question}}\nAnswer:",
|
23 |
+
"doc_to_target": "{{choices.label.index(answerKey)}}",
|
24 |
+
"doc_to_choice": "{{choices.text}}",
|
25 |
+
"description": "",
|
26 |
+
"target_delimiter": " ",
|
27 |
+
"fewshot_delimiter": "\n\n",
|
28 |
+
"num_fewshot": 25,
|
29 |
+
"metric_list": [
|
30 |
+
{
|
31 |
+
"metric": "acc",
|
32 |
+
"aggregation": "mean",
|
33 |
+
"higher_is_better": true
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"metric": "acc_norm",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"output_type": "multiple_choice",
|
42 |
+
"repeats": 1,
|
43 |
+
"should_decontaminate": true,
|
44 |
+
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
|
45 |
+
"metadata": {
|
46 |
+
"version": 1.0
|
47 |
+
}
|
48 |
+
}
|
49 |
+
},
|
50 |
+
"versions": {
|
51 |
+
"arc_challenge": 1.0
|
52 |
+
},
|
53 |
+
"n-shot": {
|
54 |
+
"arc_challenge": 25
|
55 |
+
},
|
56 |
+
"config": {
|
57 |
+
"model": "vllm",
|
58 |
+
"model_args": "pretrained=/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/Oasis,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.9,data_parallel_size=1,max_model_len=4096",
|
59 |
+
"batch_size": "auto:128",
|
60 |
+
"batch_sizes": [],
|
61 |
+
"device": "cuda",
|
62 |
+
"use_cache": "/lustre07/scratch/gagan30/arocr/cache/",
|
63 |
+
"limit": null,
|
64 |
+
"bootstrap_iters": 100000,
|
65 |
+
"gen_kwargs": null
|
66 |
+
},
|
67 |
+
"git_hash": null
|
68 |
+
}
|
results_gsm8k.json
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"gsm8k": {
|
4 |
+
"exact_match,get-answer": 0.7414708112206216,
|
5 |
+
"exact_match_stderr,get-answer": 0.012059911372516116,
|
6 |
+
"alias": "gsm8k"
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"configs": {
|
10 |
+
"gsm8k": {
|
11 |
+
"task": "gsm8k",
|
12 |
+
"group": [
|
13 |
+
"math_word_problems"
|
14 |
+
],
|
15 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/gsm8k",
|
16 |
+
"dataset_name": "main",
|
17 |
+
"training_split": "train",
|
18 |
+
"test_split": "test",
|
19 |
+
"fewshot_split": "train",
|
20 |
+
"doc_to_text": "Question: {{question}}\nAnswer:",
|
21 |
+
"doc_to_target": "{{answer}}",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"num_fewshot": 5,
|
26 |
+
"metric_list": [
|
27 |
+
{
|
28 |
+
"metric": "exact_match",
|
29 |
+
"aggregation": "mean",
|
30 |
+
"higher_is_better": true,
|
31 |
+
"ignore_case": true,
|
32 |
+
"ignore_punctuation": false,
|
33 |
+
"regexes_to_ignore": [
|
34 |
+
",",
|
35 |
+
"\\$",
|
36 |
+
"(?s).*#### "
|
37 |
+
]
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"output_type": "generate_until",
|
41 |
+
"generation_kwargs": {
|
42 |
+
"until": [
|
43 |
+
"\n\n",
|
44 |
+
"Question:"
|
45 |
+
],
|
46 |
+
"do_sample": false,
|
47 |
+
"temperature": 0.0
|
48 |
+
},
|
49 |
+
"repeats": 1,
|
50 |
+
"filter_list": [
|
51 |
+
{
|
52 |
+
"name": "get-answer",
|
53 |
+
"filter": [
|
54 |
+
{
|
55 |
+
"function": "regex",
|
56 |
+
"regex_pattern": "#### (\\-?[0-9\\.\\,]+)"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"function": "take_first"
|
60 |
+
}
|
61 |
+
]
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"should_decontaminate": false,
|
65 |
+
"metadata": {
|
66 |
+
"version": 2.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"versions": {
|
71 |
+
"gsm8k": 2.0
|
72 |
+
},
|
73 |
+
"n-shot": {
|
74 |
+
"gsm8k": 5
|
75 |
+
},
|
76 |
+
"config": {
|
77 |
+
"model": "vllm",
|
78 |
+
"model_args": "pretrained=/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/Oasis,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.9,data_parallel_size=1,max_model_len=4096",
|
79 |
+
"batch_size": "auto:128",
|
80 |
+
"batch_sizes": [],
|
81 |
+
"device": "cuda",
|
82 |
+
"use_cache": "/lustre07/scratch/gagan30/arocr/cache/",
|
83 |
+
"limit": null,
|
84 |
+
"bootstrap_iters": 100000,
|
85 |
+
"gen_kwargs": null
|
86 |
+
},
|
87 |
+
"git_hash": null
|
88 |
+
}
|
results_hellaswag.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6504680342561243,
|
5 |
+
"acc_stderr,none": 0.004758476684324035,
|
6 |
+
"acc_norm,none": 0.8483369846644094,
|
7 |
+
"acc_norm_stderr,none": 0.0035796087435066605,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"hellaswag": {
|
13 |
+
"task": "hellaswag",
|
14 |
+
"group": [
|
15 |
+
"multiple_choice"
|
16 |
+
],
|
17 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/hellaswag",
|
18 |
+
"training_split": "train",
|
19 |
+
"validation_split": "validation",
|
20 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
21 |
+
"doc_to_text": "{{query}}",
|
22 |
+
"doc_to_target": "{{label}}",
|
23 |
+
"doc_to_choice": "choices",
|
24 |
+
"description": "",
|
25 |
+
"target_delimiter": " ",
|
26 |
+
"fewshot_delimiter": "\n\n",
|
27 |
+
"num_fewshot": 10,
|
28 |
+
"metric_list": [
|
29 |
+
{
|
30 |
+
"metric": "acc",
|
31 |
+
"aggregation": "mean",
|
32 |
+
"higher_is_better": true
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"metric": "acc_norm",
|
36 |
+
"aggregation": "mean",
|
37 |
+
"higher_is_better": true
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"output_type": "multiple_choice",
|
41 |
+
"repeats": 1,
|
42 |
+
"should_decontaminate": false,
|
43 |
+
"metadata": {
|
44 |
+
"version": 1.0
|
45 |
+
}
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"versions": {
|
49 |
+
"hellaswag": 1.0
|
50 |
+
},
|
51 |
+
"n-shot": {
|
52 |
+
"hellaswag": 10
|
53 |
+
},
|
54 |
+
"config": {
|
55 |
+
"model": "vllm",
|
56 |
+
"model_args": "pretrained=/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/Oasis,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.9,data_parallel_size=1,max_model_len=4096",
|
57 |
+
"batch_size": "auto:128",
|
58 |
+
"batch_sizes": [],
|
59 |
+
"device": "cuda",
|
60 |
+
"use_cache": "/lustre07/scratch/gagan30/arocr/cache/",
|
61 |
+
"limit": null,
|
62 |
+
"bootstrap_iters": 100000,
|
63 |
+
"gen_kwargs": null
|
64 |
+
},
|
65 |
+
"git_hash": null
|
66 |
+
}
|
results_mmlu.json
ADDED
@@ -0,0 +1,2649 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"mmlu": {
|
4 |
+
"acc,none": 0.6396524711579548,
|
5 |
+
"acc_stderr,none": 0.0038282718412418733,
|
6 |
+
"alias": "mmlu"
|
7 |
+
},
|
8 |
+
"mmlu_humanities": {
|
9 |
+
"alias": " - humanities",
|
10 |
+
"acc,none": 0.6,
|
11 |
+
"acc_stderr,none": 0.006778341124606213
|
12 |
+
},
|
13 |
+
"mmlu_formal_logic": {
|
14 |
+
"alias": " - formal_logic",
|
15 |
+
"acc,none": 0.4444444444444444,
|
16 |
+
"acc_stderr,none": 0.04444444444444449
|
17 |
+
},
|
18 |
+
"mmlu_high_school_european_history": {
|
19 |
+
"alias": " - high_school_european_history",
|
20 |
+
"acc,none": 0.7696969696969697,
|
21 |
+
"acc_stderr,none": 0.0328766675860349
|
22 |
+
},
|
23 |
+
"mmlu_high_school_us_history": {
|
24 |
+
"alias": " - high_school_us_history",
|
25 |
+
"acc,none": 0.8480392156862745,
|
26 |
+
"acc_stderr,none": 0.025195658428931792
|
27 |
+
},
|
28 |
+
"mmlu_high_school_world_history": {
|
29 |
+
"alias": " - high_school_world_history",
|
30 |
+
"acc,none": 0.8016877637130801,
|
31 |
+
"acc_stderr,none": 0.02595502084162111
|
32 |
+
},
|
33 |
+
"mmlu_international_law": {
|
34 |
+
"alias": " - international_law",
|
35 |
+
"acc,none": 0.7768595041322314,
|
36 |
+
"acc_stderr,none": 0.03800754475228733
|
37 |
+
},
|
38 |
+
"mmlu_jurisprudence": {
|
39 |
+
"alias": " - jurisprudence",
|
40 |
+
"acc,none": 0.7685185185185185,
|
41 |
+
"acc_stderr,none": 0.04077494709252627
|
42 |
+
},
|
43 |
+
"mmlu_logical_fallacies": {
|
44 |
+
"alias": " - logical_fallacies",
|
45 |
+
"acc,none": 0.7668711656441718,
|
46 |
+
"acc_stderr,none": 0.033220157957767414
|
47 |
+
},
|
48 |
+
"mmlu_moral_disputes": {
|
49 |
+
"alias": " - moral_disputes",
|
50 |
+
"acc,none": 0.7283236994219653,
|
51 |
+
"acc_stderr,none": 0.023948512905468348
|
52 |
+
},
|
53 |
+
"mmlu_moral_scenarios": {
|
54 |
+
"alias": " - moral_scenarios",
|
55 |
+
"acc,none": 0.4681564245810056,
|
56 |
+
"acc_stderr,none": 0.016688553415612213
|
57 |
+
},
|
58 |
+
"mmlu_philosophy": {
|
59 |
+
"alias": " - philosophy",
|
60 |
+
"acc,none": 0.707395498392283,
|
61 |
+
"acc_stderr,none": 0.02583989833487798
|
62 |
+
},
|
63 |
+
"mmlu_prehistory": {
|
64 |
+
"alias": " - prehistory",
|
65 |
+
"acc,none": 0.7438271604938271,
|
66 |
+
"acc_stderr,none": 0.0242885336377261
|
67 |
+
},
|
68 |
+
"mmlu_professional_law": {
|
69 |
+
"alias": " - professional_law",
|
70 |
+
"acc,none": 0.4556714471968709,
|
71 |
+
"acc_stderr,none": 0.012719949543032204
|
72 |
+
},
|
73 |
+
"mmlu_world_religions": {
|
74 |
+
"alias": " - world_religions",
|
75 |
+
"acc,none": 0.8421052631578947,
|
76 |
+
"acc_stderr,none": 0.027966785859160872
|
77 |
+
},
|
78 |
+
"mmlu_other": {
|
79 |
+
"alias": " - other",
|
80 |
+
"acc,none": 0.7051818474412617,
|
81 |
+
"acc_stderr,none": 0.00782572992790983
|
82 |
+
},
|
83 |
+
"mmlu_business_ethics": {
|
84 |
+
"alias": " - business_ethics",
|
85 |
+
"acc,none": 0.65,
|
86 |
+
"acc_stderr,none": 0.047937248544110196
|
87 |
+
},
|
88 |
+
"mmlu_clinical_knowledge": {
|
89 |
+
"alias": " - clinical_knowledge",
|
90 |
+
"acc,none": 0.7169811320754716,
|
91 |
+
"acc_stderr,none": 0.027724236492700918
|
92 |
+
},
|
93 |
+
"mmlu_college_medicine": {
|
94 |
+
"alias": " - college_medicine",
|
95 |
+
"acc,none": 0.6589595375722543,
|
96 |
+
"acc_stderr,none": 0.036146654241808254
|
97 |
+
},
|
98 |
+
"mmlu_global_facts": {
|
99 |
+
"alias": " - global_facts",
|
100 |
+
"acc,none": 0.32,
|
101 |
+
"acc_stderr,none": 0.046882617226215034
|
102 |
+
},
|
103 |
+
"mmlu_human_aging": {
|
104 |
+
"alias": " - human_aging",
|
105 |
+
"acc,none": 0.695067264573991,
|
106 |
+
"acc_stderr,none": 0.03089861088247752
|
107 |
+
},
|
108 |
+
"mmlu_management": {
|
109 |
+
"alias": " - management",
|
110 |
+
"acc,none": 0.7864077669902912,
|
111 |
+
"acc_stderr,none": 0.04058042015646034
|
112 |
+
},
|
113 |
+
"mmlu_marketing": {
|
114 |
+
"alias": " - marketing",
|
115 |
+
"acc,none": 0.8846153846153846,
|
116 |
+
"acc_stderr,none": 0.020930193185179333
|
117 |
+
},
|
118 |
+
"mmlu_medical_genetics": {
|
119 |
+
"alias": " - medical_genetics",
|
120 |
+
"acc,none": 0.72,
|
121 |
+
"acc_stderr,none": 0.04512608598542127
|
122 |
+
},
|
123 |
+
"mmlu_miscellaneous": {
|
124 |
+
"alias": " - miscellaneous",
|
125 |
+
"acc,none": 0.8314176245210728,
|
126 |
+
"acc_stderr,none": 0.013387895731543602
|
127 |
+
},
|
128 |
+
"mmlu_nutrition": {
|
129 |
+
"alias": " - nutrition",
|
130 |
+
"acc,none": 0.7222222222222222,
|
131 |
+
"acc_stderr,none": 0.02564686309713791
|
132 |
+
},
|
133 |
+
"mmlu_professional_accounting": {
|
134 |
+
"alias": " - professional_accounting",
|
135 |
+
"acc,none": 0.4645390070921986,
|
136 |
+
"acc_stderr,none": 0.029752389657427054
|
137 |
+
},
|
138 |
+
"mmlu_professional_medicine": {
|
139 |
+
"alias": " - professional_medicine",
|
140 |
+
"acc,none": 0.6654411764705882,
|
141 |
+
"acc_stderr,none": 0.02866199620233531
|
142 |
+
},
|
143 |
+
"mmlu_virology": {
|
144 |
+
"alias": " - virology",
|
145 |
+
"acc,none": 0.5481927710843374,
|
146 |
+
"acc_stderr,none": 0.03874371556587953
|
147 |
+
},
|
148 |
+
"mmlu_social_sciences": {
|
149 |
+
"alias": " - social_sciences",
|
150 |
+
"acc,none": 0.745206369840754,
|
151 |
+
"acc_stderr,none": 0.0076970085276856625
|
152 |
+
},
|
153 |
+
"mmlu_econometrics": {
|
154 |
+
"alias": " - econometrics",
|
155 |
+
"acc,none": 0.5087719298245614,
|
156 |
+
"acc_stderr,none": 0.04702880432049615
|
157 |
+
},
|
158 |
+
"mmlu_high_school_geography": {
|
159 |
+
"alias": " - high_school_geography",
|
160 |
+
"acc,none": 0.7929292929292929,
|
161 |
+
"acc_stderr,none": 0.02886977846026707
|
162 |
+
},
|
163 |
+
"mmlu_high_school_government_and_politics": {
|
164 |
+
"alias": " - high_school_government_and_politics",
|
165 |
+
"acc,none": 0.8808290155440415,
|
166 |
+
"acc_stderr,none": 0.023381935348121437
|
167 |
+
},
|
168 |
+
"mmlu_high_school_macroeconomics": {
|
169 |
+
"alias": " - high_school_macroeconomics",
|
170 |
+
"acc,none": 0.6743589743589744,
|
171 |
+
"acc_stderr,none": 0.02375966576741229
|
172 |
+
},
|
173 |
+
"mmlu_high_school_microeconomics": {
|
174 |
+
"alias": " - high_school_microeconomics",
|
175 |
+
"acc,none": 0.6932773109243697,
|
176 |
+
"acc_stderr,none": 0.029953823891887037
|
177 |
+
},
|
178 |
+
"mmlu_high_school_psychology": {
|
179 |
+
"alias": " - high_school_psychology",
|
180 |
+
"acc,none": 0.8422018348623853,
|
181 |
+
"acc_stderr,none": 0.01563002297009244
|
182 |
+
},
|
183 |
+
"mmlu_human_sexuality": {
|
184 |
+
"alias": " - human_sexuality",
|
185 |
+
"acc,none": 0.7862595419847328,
|
186 |
+
"acc_stderr,none": 0.0359546161177469
|
187 |
+
},
|
188 |
+
"mmlu_professional_psychology": {
|
189 |
+
"alias": " - professional_psychology",
|
190 |
+
"acc,none": 0.6715686274509803,
|
191 |
+
"acc_stderr,none": 0.018999707383162662
|
192 |
+
},
|
193 |
+
"mmlu_public_relations": {
|
194 |
+
"alias": " - public_relations",
|
195 |
+
"acc,none": 0.6545454545454545,
|
196 |
+
"acc_stderr,none": 0.04554619617541054
|
197 |
+
},
|
198 |
+
"mmlu_security_studies": {
|
199 |
+
"alias": " - security_studies",
|
200 |
+
"acc,none": 0.7387755102040816,
|
201 |
+
"acc_stderr,none": 0.028123429335142787
|
202 |
+
},
|
203 |
+
"mmlu_sociology": {
|
204 |
+
"alias": " - sociology",
|
205 |
+
"acc,none": 0.8507462686567164,
|
206 |
+
"acc_stderr,none": 0.025196929874827093
|
207 |
+
},
|
208 |
+
"mmlu_us_foreign_policy": {
|
209 |
+
"alias": " - us_foreign_policy",
|
210 |
+
"acc,none": 0.83,
|
211 |
+
"acc_stderr,none": 0.0377525168068637
|
212 |
+
},
|
213 |
+
"mmlu_stem": {
|
214 |
+
"alias": " - stem",
|
215 |
+
"acc,none": 0.5312400888043134,
|
216 |
+
"acc_stderr,none": 0.00851347107140647
|
217 |
+
},
|
218 |
+
"mmlu_abstract_algebra": {
|
219 |
+
"alias": " - abstract_algebra",
|
220 |
+
"acc,none": 0.3,
|
221 |
+
"acc_stderr,none": 0.046056618647183814
|
222 |
+
},
|
223 |
+
"mmlu_anatomy": {
|
224 |
+
"alias": " - anatomy",
|
225 |
+
"acc,none": 0.6444444444444445,
|
226 |
+
"acc_stderr,none": 0.04135176749720386
|
227 |
+
},
|
228 |
+
"mmlu_astronomy": {
|
229 |
+
"alias": " - astronomy",
|
230 |
+
"acc,none": 0.6907894736842105,
|
231 |
+
"acc_stderr,none": 0.03761070869867479
|
232 |
+
},
|
233 |
+
"mmlu_college_biology": {
|
234 |
+
"alias": " - college_biology",
|
235 |
+
"acc,none": 0.7291666666666666,
|
236 |
+
"acc_stderr,none": 0.03716177437566017
|
237 |
+
},
|
238 |
+
"mmlu_college_chemistry": {
|
239 |
+
"alias": " - college_chemistry",
|
240 |
+
"acc,none": 0.45,
|
241 |
+
"acc_stderr,none": 0.049999999999999996
|
242 |
+
},
|
243 |
+
"mmlu_college_computer_science": {
|
244 |
+
"alias": " - college_computer_science",
|
245 |
+
"acc,none": 0.55,
|
246 |
+
"acc_stderr,none": 0.04999999999999999
|
247 |
+
},
|
248 |
+
"mmlu_college_mathematics": {
|
249 |
+
"alias": " - college_mathematics",
|
250 |
+
"acc,none": 0.32,
|
251 |
+
"acc_stderr,none": 0.04688261722621505
|
252 |
+
},
|
253 |
+
"mmlu_college_physics": {
|
254 |
+
"alias": " - college_physics",
|
255 |
+
"acc,none": 0.4411764705882353,
|
256 |
+
"acc_stderr,none": 0.049406356306056595
|
257 |
+
},
|
258 |
+
"mmlu_computer_security": {
|
259 |
+
"alias": " - computer_security",
|
260 |
+
"acc,none": 0.76,
|
261 |
+
"acc_stderr,none": 0.04292346959909282
|
262 |
+
},
|
263 |
+
"mmlu_conceptual_physics": {
|
264 |
+
"alias": " - conceptual_physics",
|
265 |
+
"acc,none": 0.6042553191489362,
|
266 |
+
"acc_stderr,none": 0.03196758697835362
|
267 |
+
},
|
268 |
+
"mmlu_electrical_engineering": {
|
269 |
+
"alias": " - electrical_engineering",
|
270 |
+
"acc,none": 0.5586206896551724,
|
271 |
+
"acc_stderr,none": 0.04137931034482757
|
272 |
+
},
|
273 |
+
"mmlu_elementary_mathematics": {
|
274 |
+
"alias": " - elementary_mathematics",
|
275 |
+
"acc,none": 0.41798941798941797,
|
276 |
+
"acc_stderr,none": 0.02540255550326091
|
277 |
+
},
|
278 |
+
"mmlu_high_school_biology": {
|
279 |
+
"alias": " - high_school_biology",
|
280 |
+
"acc,none": 0.7741935483870968,
|
281 |
+
"acc_stderr,none": 0.023785577884181012
|
282 |
+
},
|
283 |
+
"mmlu_high_school_chemistry": {
|
284 |
+
"alias": " - high_school_chemistry",
|
285 |
+
"acc,none": 0.4975369458128079,
|
286 |
+
"acc_stderr,none": 0.03517945038691063
|
287 |
+
},
|
288 |
+
"mmlu_high_school_computer_science": {
|
289 |
+
"alias": " - high_school_computer_science",
|
290 |
+
"acc,none": 0.68,
|
291 |
+
"acc_stderr,none": 0.04688261722621504
|
292 |
+
},
|
293 |
+
"mmlu_high_school_mathematics": {
|
294 |
+
"alias": " - high_school_mathematics",
|
295 |
+
"acc,none": 0.362962962962963,
|
296 |
+
"acc_stderr,none": 0.029318203645206865
|
297 |
+
},
|
298 |
+
"mmlu_high_school_physics": {
|
299 |
+
"alias": " - high_school_physics",
|
300 |
+
"acc,none": 0.36423841059602646,
|
301 |
+
"acc_stderr,none": 0.03929111781242741
|
302 |
+
},
|
303 |
+
"mmlu_high_school_statistics": {
|
304 |
+
"alias": " - high_school_statistics",
|
305 |
+
"acc,none": 0.5,
|
306 |
+
"acc_stderr,none": 0.034099716973523674
|
307 |
+
},
|
308 |
+
"mmlu_machine_learning": {
|
309 |
+
"alias": " - machine_learning",
|
310 |
+
"acc,none": 0.39285714285714285,
|
311 |
+
"acc_stderr,none": 0.04635550135609976
|
312 |
+
}
|
313 |
+
},
|
314 |
+
"groups": {
|
315 |
+
"mmlu": {
|
316 |
+
"acc,none": 0.6396524711579548,
|
317 |
+
"acc_stderr,none": 0.0038282718412418733,
|
318 |
+
"alias": "mmlu"
|
319 |
+
},
|
320 |
+
"mmlu_humanities": {
|
321 |
+
"alias": " - humanities",
|
322 |
+
"acc,none": 0.6,
|
323 |
+
"acc_stderr,none": 0.006778341124606213
|
324 |
+
},
|
325 |
+
"mmlu_other": {
|
326 |
+
"alias": " - other",
|
327 |
+
"acc,none": 0.7051818474412617,
|
328 |
+
"acc_stderr,none": 0.00782572992790983
|
329 |
+
},
|
330 |
+
"mmlu_social_sciences": {
|
331 |
+
"alias": " - social_sciences",
|
332 |
+
"acc,none": 0.745206369840754,
|
333 |
+
"acc_stderr,none": 0.0076970085276856625
|
334 |
+
},
|
335 |
+
"mmlu_stem": {
|
336 |
+
"alias": " - stem",
|
337 |
+
"acc,none": 0.5312400888043134,
|
338 |
+
"acc_stderr,none": 0.00851347107140647
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"configs": {
|
342 |
+
"mmlu_abstract_algebra": {
|
343 |
+
"task": "mmlu_abstract_algebra",
|
344 |
+
"task_alias": "abstract_algebra",
|
345 |
+
"group": "mmlu_stem",
|
346 |
+
"group_alias": "stem",
|
347 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
348 |
+
"dataset_name": "abstract_algebra",
|
349 |
+
"test_split": "test",
|
350 |
+
"fewshot_split": "dev",
|
351 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
352 |
+
"doc_to_target": "answer",
|
353 |
+
"doc_to_choice": [
|
354 |
+
"A",
|
355 |
+
"B",
|
356 |
+
"C",
|
357 |
+
"D"
|
358 |
+
],
|
359 |
+
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
|
360 |
+
"target_delimiter": " ",
|
361 |
+
"fewshot_delimiter": "\n\n",
|
362 |
+
"fewshot_config": {
|
363 |
+
"sampler": "first_n"
|
364 |
+
},
|
365 |
+
"num_fewshot": 5,
|
366 |
+
"metric_list": [
|
367 |
+
{
|
368 |
+
"metric": "acc",
|
369 |
+
"aggregation": "mean",
|
370 |
+
"higher_is_better": true
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"output_type": "multiple_choice",
|
374 |
+
"repeats": 1,
|
375 |
+
"should_decontaminate": false,
|
376 |
+
"metadata": {
|
377 |
+
"version": 0.0
|
378 |
+
}
|
379 |
+
},
|
380 |
+
"mmlu_anatomy": {
|
381 |
+
"task": "mmlu_anatomy",
|
382 |
+
"task_alias": "anatomy",
|
383 |
+
"group": "mmlu_stem",
|
384 |
+
"group_alias": "stem",
|
385 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
386 |
+
"dataset_name": "anatomy",
|
387 |
+
"test_split": "test",
|
388 |
+
"fewshot_split": "dev",
|
389 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
390 |
+
"doc_to_target": "answer",
|
391 |
+
"doc_to_choice": [
|
392 |
+
"A",
|
393 |
+
"B",
|
394 |
+
"C",
|
395 |
+
"D"
|
396 |
+
],
|
397 |
+
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
|
398 |
+
"target_delimiter": " ",
|
399 |
+
"fewshot_delimiter": "\n\n",
|
400 |
+
"fewshot_config": {
|
401 |
+
"sampler": "first_n"
|
402 |
+
},
|
403 |
+
"num_fewshot": 5,
|
404 |
+
"metric_list": [
|
405 |
+
{
|
406 |
+
"metric": "acc",
|
407 |
+
"aggregation": "mean",
|
408 |
+
"higher_is_better": true
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"output_type": "multiple_choice",
|
412 |
+
"repeats": 1,
|
413 |
+
"should_decontaminate": false,
|
414 |
+
"metadata": {
|
415 |
+
"version": 0.0
|
416 |
+
}
|
417 |
+
},
|
418 |
+
"mmlu_astronomy": {
|
419 |
+
"task": "mmlu_astronomy",
|
420 |
+
"task_alias": "astronomy",
|
421 |
+
"group": "mmlu_stem",
|
422 |
+
"group_alias": "stem",
|
423 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
424 |
+
"dataset_name": "astronomy",
|
425 |
+
"test_split": "test",
|
426 |
+
"fewshot_split": "dev",
|
427 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
428 |
+
"doc_to_target": "answer",
|
429 |
+
"doc_to_choice": [
|
430 |
+
"A",
|
431 |
+
"B",
|
432 |
+
"C",
|
433 |
+
"D"
|
434 |
+
],
|
435 |
+
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
|
436 |
+
"target_delimiter": " ",
|
437 |
+
"fewshot_delimiter": "\n\n",
|
438 |
+
"fewshot_config": {
|
439 |
+
"sampler": "first_n"
|
440 |
+
},
|
441 |
+
"num_fewshot": 5,
|
442 |
+
"metric_list": [
|
443 |
+
{
|
444 |
+
"metric": "acc",
|
445 |
+
"aggregation": "mean",
|
446 |
+
"higher_is_better": true
|
447 |
+
}
|
448 |
+
],
|
449 |
+
"output_type": "multiple_choice",
|
450 |
+
"repeats": 1,
|
451 |
+
"should_decontaminate": false,
|
452 |
+
"metadata": {
|
453 |
+
"version": 0.0
|
454 |
+
}
|
455 |
+
},
|
456 |
+
"mmlu_business_ethics": {
|
457 |
+
"task": "mmlu_business_ethics",
|
458 |
+
"task_alias": "business_ethics",
|
459 |
+
"group": "mmlu_other",
|
460 |
+
"group_alias": "other",
|
461 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
462 |
+
"dataset_name": "business_ethics",
|
463 |
+
"test_split": "test",
|
464 |
+
"fewshot_split": "dev",
|
465 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
466 |
+
"doc_to_target": "answer",
|
467 |
+
"doc_to_choice": [
|
468 |
+
"A",
|
469 |
+
"B",
|
470 |
+
"C",
|
471 |
+
"D"
|
472 |
+
],
|
473 |
+
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
|
474 |
+
"target_delimiter": " ",
|
475 |
+
"fewshot_delimiter": "\n\n",
|
476 |
+
"fewshot_config": {
|
477 |
+
"sampler": "first_n"
|
478 |
+
},
|
479 |
+
"num_fewshot": 5,
|
480 |
+
"metric_list": [
|
481 |
+
{
|
482 |
+
"metric": "acc",
|
483 |
+
"aggregation": "mean",
|
484 |
+
"higher_is_better": true
|
485 |
+
}
|
486 |
+
],
|
487 |
+
"output_type": "multiple_choice",
|
488 |
+
"repeats": 1,
|
489 |
+
"should_decontaminate": false,
|
490 |
+
"metadata": {
|
491 |
+
"version": 0.0
|
492 |
+
}
|
493 |
+
},
|
494 |
+
"mmlu_clinical_knowledge": {
|
495 |
+
"task": "mmlu_clinical_knowledge",
|
496 |
+
"task_alias": "clinical_knowledge",
|
497 |
+
"group": "mmlu_other",
|
498 |
+
"group_alias": "other",
|
499 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
500 |
+
"dataset_name": "clinical_knowledge",
|
501 |
+
"test_split": "test",
|
502 |
+
"fewshot_split": "dev",
|
503 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
504 |
+
"doc_to_target": "answer",
|
505 |
+
"doc_to_choice": [
|
506 |
+
"A",
|
507 |
+
"B",
|
508 |
+
"C",
|
509 |
+
"D"
|
510 |
+
],
|
511 |
+
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
|
512 |
+
"target_delimiter": " ",
|
513 |
+
"fewshot_delimiter": "\n\n",
|
514 |
+
"fewshot_config": {
|
515 |
+
"sampler": "first_n"
|
516 |
+
},
|
517 |
+
"num_fewshot": 5,
|
518 |
+
"metric_list": [
|
519 |
+
{
|
520 |
+
"metric": "acc",
|
521 |
+
"aggregation": "mean",
|
522 |
+
"higher_is_better": true
|
523 |
+
}
|
524 |
+
],
|
525 |
+
"output_type": "multiple_choice",
|
526 |
+
"repeats": 1,
|
527 |
+
"should_decontaminate": false,
|
528 |
+
"metadata": {
|
529 |
+
"version": 0.0
|
530 |
+
}
|
531 |
+
},
|
532 |
+
"mmlu_college_biology": {
|
533 |
+
"task": "mmlu_college_biology",
|
534 |
+
"task_alias": "college_biology",
|
535 |
+
"group": "mmlu_stem",
|
536 |
+
"group_alias": "stem",
|
537 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
538 |
+
"dataset_name": "college_biology",
|
539 |
+
"test_split": "test",
|
540 |
+
"fewshot_split": "dev",
|
541 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
542 |
+
"doc_to_target": "answer",
|
543 |
+
"doc_to_choice": [
|
544 |
+
"A",
|
545 |
+
"B",
|
546 |
+
"C",
|
547 |
+
"D"
|
548 |
+
],
|
549 |
+
"description": "The following are multiple choice questions (with answers) about college biology.\n\n",
|
550 |
+
"target_delimiter": " ",
|
551 |
+
"fewshot_delimiter": "\n\n",
|
552 |
+
"fewshot_config": {
|
553 |
+
"sampler": "first_n"
|
554 |
+
},
|
555 |
+
"num_fewshot": 5,
|
556 |
+
"metric_list": [
|
557 |
+
{
|
558 |
+
"metric": "acc",
|
559 |
+
"aggregation": "mean",
|
560 |
+
"higher_is_better": true
|
561 |
+
}
|
562 |
+
],
|
563 |
+
"output_type": "multiple_choice",
|
564 |
+
"repeats": 1,
|
565 |
+
"should_decontaminate": false,
|
566 |
+
"metadata": {
|
567 |
+
"version": 0.0
|
568 |
+
}
|
569 |
+
},
|
570 |
+
"mmlu_college_chemistry": {
|
571 |
+
"task": "mmlu_college_chemistry",
|
572 |
+
"task_alias": "college_chemistry",
|
573 |
+
"group": "mmlu_stem",
|
574 |
+
"group_alias": "stem",
|
575 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
576 |
+
"dataset_name": "college_chemistry",
|
577 |
+
"test_split": "test",
|
578 |
+
"fewshot_split": "dev",
|
579 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
580 |
+
"doc_to_target": "answer",
|
581 |
+
"doc_to_choice": [
|
582 |
+
"A",
|
583 |
+
"B",
|
584 |
+
"C",
|
585 |
+
"D"
|
586 |
+
],
|
587 |
+
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
|
588 |
+
"target_delimiter": " ",
|
589 |
+
"fewshot_delimiter": "\n\n",
|
590 |
+
"fewshot_config": {
|
591 |
+
"sampler": "first_n"
|
592 |
+
},
|
593 |
+
"num_fewshot": 5,
|
594 |
+
"metric_list": [
|
595 |
+
{
|
596 |
+
"metric": "acc",
|
597 |
+
"aggregation": "mean",
|
598 |
+
"higher_is_better": true
|
599 |
+
}
|
600 |
+
],
|
601 |
+
"output_type": "multiple_choice",
|
602 |
+
"repeats": 1,
|
603 |
+
"should_decontaminate": false,
|
604 |
+
"metadata": {
|
605 |
+
"version": 0.0
|
606 |
+
}
|
607 |
+
},
|
608 |
+
"mmlu_college_computer_science": {
|
609 |
+
"task": "mmlu_college_computer_science",
|
610 |
+
"task_alias": "college_computer_science",
|
611 |
+
"group": "mmlu_stem",
|
612 |
+
"group_alias": "stem",
|
613 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
614 |
+
"dataset_name": "college_computer_science",
|
615 |
+
"test_split": "test",
|
616 |
+
"fewshot_split": "dev",
|
617 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
618 |
+
"doc_to_target": "answer",
|
619 |
+
"doc_to_choice": [
|
620 |
+
"A",
|
621 |
+
"B",
|
622 |
+
"C",
|
623 |
+
"D"
|
624 |
+
],
|
625 |
+
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
|
626 |
+
"target_delimiter": " ",
|
627 |
+
"fewshot_delimiter": "\n\n",
|
628 |
+
"fewshot_config": {
|
629 |
+
"sampler": "first_n"
|
630 |
+
},
|
631 |
+
"num_fewshot": 5,
|
632 |
+
"metric_list": [
|
633 |
+
{
|
634 |
+
"metric": "acc",
|
635 |
+
"aggregation": "mean",
|
636 |
+
"higher_is_better": true
|
637 |
+
}
|
638 |
+
],
|
639 |
+
"output_type": "multiple_choice",
|
640 |
+
"repeats": 1,
|
641 |
+
"should_decontaminate": false,
|
642 |
+
"metadata": {
|
643 |
+
"version": 0.0
|
644 |
+
}
|
645 |
+
},
|
646 |
+
"mmlu_college_mathematics": {
|
647 |
+
"task": "mmlu_college_mathematics",
|
648 |
+
"task_alias": "college_mathematics",
|
649 |
+
"group": "mmlu_stem",
|
650 |
+
"group_alias": "stem",
|
651 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
652 |
+
"dataset_name": "college_mathematics",
|
653 |
+
"test_split": "test",
|
654 |
+
"fewshot_split": "dev",
|
655 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
656 |
+
"doc_to_target": "answer",
|
657 |
+
"doc_to_choice": [
|
658 |
+
"A",
|
659 |
+
"B",
|
660 |
+
"C",
|
661 |
+
"D"
|
662 |
+
],
|
663 |
+
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
|
664 |
+
"target_delimiter": " ",
|
665 |
+
"fewshot_delimiter": "\n\n",
|
666 |
+
"fewshot_config": {
|
667 |
+
"sampler": "first_n"
|
668 |
+
},
|
669 |
+
"num_fewshot": 5,
|
670 |
+
"metric_list": [
|
671 |
+
{
|
672 |
+
"metric": "acc",
|
673 |
+
"aggregation": "mean",
|
674 |
+
"higher_is_better": true
|
675 |
+
}
|
676 |
+
],
|
677 |
+
"output_type": "multiple_choice",
|
678 |
+
"repeats": 1,
|
679 |
+
"should_decontaminate": false,
|
680 |
+
"metadata": {
|
681 |
+
"version": 0.0
|
682 |
+
}
|
683 |
+
},
|
684 |
+
"mmlu_college_medicine": {
|
685 |
+
"task": "mmlu_college_medicine",
|
686 |
+
"task_alias": "college_medicine",
|
687 |
+
"group": "mmlu_other",
|
688 |
+
"group_alias": "other",
|
689 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
690 |
+
"dataset_name": "college_medicine",
|
691 |
+
"test_split": "test",
|
692 |
+
"fewshot_split": "dev",
|
693 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
694 |
+
"doc_to_target": "answer",
|
695 |
+
"doc_to_choice": [
|
696 |
+
"A",
|
697 |
+
"B",
|
698 |
+
"C",
|
699 |
+
"D"
|
700 |
+
],
|
701 |
+
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
|
702 |
+
"target_delimiter": " ",
|
703 |
+
"fewshot_delimiter": "\n\n",
|
704 |
+
"fewshot_config": {
|
705 |
+
"sampler": "first_n"
|
706 |
+
},
|
707 |
+
"num_fewshot": 5,
|
708 |
+
"metric_list": [
|
709 |
+
{
|
710 |
+
"metric": "acc",
|
711 |
+
"aggregation": "mean",
|
712 |
+
"higher_is_better": true
|
713 |
+
}
|
714 |
+
],
|
715 |
+
"output_type": "multiple_choice",
|
716 |
+
"repeats": 1,
|
717 |
+
"should_decontaminate": false,
|
718 |
+
"metadata": {
|
719 |
+
"version": 0.0
|
720 |
+
}
|
721 |
+
},
|
722 |
+
"mmlu_college_physics": {
|
723 |
+
"task": "mmlu_college_physics",
|
724 |
+
"task_alias": "college_physics",
|
725 |
+
"group": "mmlu_stem",
|
726 |
+
"group_alias": "stem",
|
727 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
728 |
+
"dataset_name": "college_physics",
|
729 |
+
"test_split": "test",
|
730 |
+
"fewshot_split": "dev",
|
731 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
732 |
+
"doc_to_target": "answer",
|
733 |
+
"doc_to_choice": [
|
734 |
+
"A",
|
735 |
+
"B",
|
736 |
+
"C",
|
737 |
+
"D"
|
738 |
+
],
|
739 |
+
"description": "The following are multiple choice questions (with answers) about college physics.\n\n",
|
740 |
+
"target_delimiter": " ",
|
741 |
+
"fewshot_delimiter": "\n\n",
|
742 |
+
"fewshot_config": {
|
743 |
+
"sampler": "first_n"
|
744 |
+
},
|
745 |
+
"num_fewshot": 5,
|
746 |
+
"metric_list": [
|
747 |
+
{
|
748 |
+
"metric": "acc",
|
749 |
+
"aggregation": "mean",
|
750 |
+
"higher_is_better": true
|
751 |
+
}
|
752 |
+
],
|
753 |
+
"output_type": "multiple_choice",
|
754 |
+
"repeats": 1,
|
755 |
+
"should_decontaminate": false,
|
756 |
+
"metadata": {
|
757 |
+
"version": 0.0
|
758 |
+
}
|
759 |
+
},
|
760 |
+
"mmlu_computer_security": {
|
761 |
+
"task": "mmlu_computer_security",
|
762 |
+
"task_alias": "computer_security",
|
763 |
+
"group": "mmlu_stem",
|
764 |
+
"group_alias": "stem",
|
765 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
766 |
+
"dataset_name": "computer_security",
|
767 |
+
"test_split": "test",
|
768 |
+
"fewshot_split": "dev",
|
769 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
770 |
+
"doc_to_target": "answer",
|
771 |
+
"doc_to_choice": [
|
772 |
+
"A",
|
773 |
+
"B",
|
774 |
+
"C",
|
775 |
+
"D"
|
776 |
+
],
|
777 |
+
"description": "The following are multiple choice questions (with answers) about computer security.\n\n",
|
778 |
+
"target_delimiter": " ",
|
779 |
+
"fewshot_delimiter": "\n\n",
|
780 |
+
"fewshot_config": {
|
781 |
+
"sampler": "first_n"
|
782 |
+
},
|
783 |
+
"num_fewshot": 5,
|
784 |
+
"metric_list": [
|
785 |
+
{
|
786 |
+
"metric": "acc",
|
787 |
+
"aggregation": "mean",
|
788 |
+
"higher_is_better": true
|
789 |
+
}
|
790 |
+
],
|
791 |
+
"output_type": "multiple_choice",
|
792 |
+
"repeats": 1,
|
793 |
+
"should_decontaminate": false,
|
794 |
+
"metadata": {
|
795 |
+
"version": 0.0
|
796 |
+
}
|
797 |
+
},
|
798 |
+
"mmlu_conceptual_physics": {
|
799 |
+
"task": "mmlu_conceptual_physics",
|
800 |
+
"task_alias": "conceptual_physics",
|
801 |
+
"group": "mmlu_stem",
|
802 |
+
"group_alias": "stem",
|
803 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
804 |
+
"dataset_name": "conceptual_physics",
|
805 |
+
"test_split": "test",
|
806 |
+
"fewshot_split": "dev",
|
807 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
808 |
+
"doc_to_target": "answer",
|
809 |
+
"doc_to_choice": [
|
810 |
+
"A",
|
811 |
+
"B",
|
812 |
+
"C",
|
813 |
+
"D"
|
814 |
+
],
|
815 |
+
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
|
816 |
+
"target_delimiter": " ",
|
817 |
+
"fewshot_delimiter": "\n\n",
|
818 |
+
"fewshot_config": {
|
819 |
+
"sampler": "first_n"
|
820 |
+
},
|
821 |
+
"num_fewshot": 5,
|
822 |
+
"metric_list": [
|
823 |
+
{
|
824 |
+
"metric": "acc",
|
825 |
+
"aggregation": "mean",
|
826 |
+
"higher_is_better": true
|
827 |
+
}
|
828 |
+
],
|
829 |
+
"output_type": "multiple_choice",
|
830 |
+
"repeats": 1,
|
831 |
+
"should_decontaminate": false,
|
832 |
+
"metadata": {
|
833 |
+
"version": 0.0
|
834 |
+
}
|
835 |
+
},
|
836 |
+
"mmlu_econometrics": {
|
837 |
+
"task": "mmlu_econometrics",
|
838 |
+
"task_alias": "econometrics",
|
839 |
+
"group": "mmlu_social_sciences",
|
840 |
+
"group_alias": "social_sciences",
|
841 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
842 |
+
"dataset_name": "econometrics",
|
843 |
+
"test_split": "test",
|
844 |
+
"fewshot_split": "dev",
|
845 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
846 |
+
"doc_to_target": "answer",
|
847 |
+
"doc_to_choice": [
|
848 |
+
"A",
|
849 |
+
"B",
|
850 |
+
"C",
|
851 |
+
"D"
|
852 |
+
],
|
853 |
+
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
|
854 |
+
"target_delimiter": " ",
|
855 |
+
"fewshot_delimiter": "\n\n",
|
856 |
+
"fewshot_config": {
|
857 |
+
"sampler": "first_n"
|
858 |
+
},
|
859 |
+
"num_fewshot": 5,
|
860 |
+
"metric_list": [
|
861 |
+
{
|
862 |
+
"metric": "acc",
|
863 |
+
"aggregation": "mean",
|
864 |
+
"higher_is_better": true
|
865 |
+
}
|
866 |
+
],
|
867 |
+
"output_type": "multiple_choice",
|
868 |
+
"repeats": 1,
|
869 |
+
"should_decontaminate": false,
|
870 |
+
"metadata": {
|
871 |
+
"version": 0.0
|
872 |
+
}
|
873 |
+
},
|
874 |
+
"mmlu_electrical_engineering": {
|
875 |
+
"task": "mmlu_electrical_engineering",
|
876 |
+
"task_alias": "electrical_engineering",
|
877 |
+
"group": "mmlu_stem",
|
878 |
+
"group_alias": "stem",
|
879 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
880 |
+
"dataset_name": "electrical_engineering",
|
881 |
+
"test_split": "test",
|
882 |
+
"fewshot_split": "dev",
|
883 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
884 |
+
"doc_to_target": "answer",
|
885 |
+
"doc_to_choice": [
|
886 |
+
"A",
|
887 |
+
"B",
|
888 |
+
"C",
|
889 |
+
"D"
|
890 |
+
],
|
891 |
+
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
|
892 |
+
"target_delimiter": " ",
|
893 |
+
"fewshot_delimiter": "\n\n",
|
894 |
+
"fewshot_config": {
|
895 |
+
"sampler": "first_n"
|
896 |
+
},
|
897 |
+
"num_fewshot": 5,
|
898 |
+
"metric_list": [
|
899 |
+
{
|
900 |
+
"metric": "acc",
|
901 |
+
"aggregation": "mean",
|
902 |
+
"higher_is_better": true
|
903 |
+
}
|
904 |
+
],
|
905 |
+
"output_type": "multiple_choice",
|
906 |
+
"repeats": 1,
|
907 |
+
"should_decontaminate": false,
|
908 |
+
"metadata": {
|
909 |
+
"version": 0.0
|
910 |
+
}
|
911 |
+
},
|
912 |
+
"mmlu_elementary_mathematics": {
|
913 |
+
"task": "mmlu_elementary_mathematics",
|
914 |
+
"task_alias": "elementary_mathematics",
|
915 |
+
"group": "mmlu_stem",
|
916 |
+
"group_alias": "stem",
|
917 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
918 |
+
"dataset_name": "elementary_mathematics",
|
919 |
+
"test_split": "test",
|
920 |
+
"fewshot_split": "dev",
|
921 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
922 |
+
"doc_to_target": "answer",
|
923 |
+
"doc_to_choice": [
|
924 |
+
"A",
|
925 |
+
"B",
|
926 |
+
"C",
|
927 |
+
"D"
|
928 |
+
],
|
929 |
+
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
|
930 |
+
"target_delimiter": " ",
|
931 |
+
"fewshot_delimiter": "\n\n",
|
932 |
+
"fewshot_config": {
|
933 |
+
"sampler": "first_n"
|
934 |
+
},
|
935 |
+
"num_fewshot": 5,
|
936 |
+
"metric_list": [
|
937 |
+
{
|
938 |
+
"metric": "acc",
|
939 |
+
"aggregation": "mean",
|
940 |
+
"higher_is_better": true
|
941 |
+
}
|
942 |
+
],
|
943 |
+
"output_type": "multiple_choice",
|
944 |
+
"repeats": 1,
|
945 |
+
"should_decontaminate": false,
|
946 |
+
"metadata": {
|
947 |
+
"version": 0.0
|
948 |
+
}
|
949 |
+
},
|
950 |
+
"mmlu_formal_logic": {
|
951 |
+
"task": "mmlu_formal_logic",
|
952 |
+
"task_alias": "formal_logic",
|
953 |
+
"group": "mmlu_humanities",
|
954 |
+
"group_alias": "humanities",
|
955 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
956 |
+
"dataset_name": "formal_logic",
|
957 |
+
"test_split": "test",
|
958 |
+
"fewshot_split": "dev",
|
959 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
960 |
+
"doc_to_target": "answer",
|
961 |
+
"doc_to_choice": [
|
962 |
+
"A",
|
963 |
+
"B",
|
964 |
+
"C",
|
965 |
+
"D"
|
966 |
+
],
|
967 |
+
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
|
968 |
+
"target_delimiter": " ",
|
969 |
+
"fewshot_delimiter": "\n\n",
|
970 |
+
"fewshot_config": {
|
971 |
+
"sampler": "first_n"
|
972 |
+
},
|
973 |
+
"num_fewshot": 5,
|
974 |
+
"metric_list": [
|
975 |
+
{
|
976 |
+
"metric": "acc",
|
977 |
+
"aggregation": "mean",
|
978 |
+
"higher_is_better": true
|
979 |
+
}
|
980 |
+
],
|
981 |
+
"output_type": "multiple_choice",
|
982 |
+
"repeats": 1,
|
983 |
+
"should_decontaminate": false,
|
984 |
+
"metadata": {
|
985 |
+
"version": 0.0
|
986 |
+
}
|
987 |
+
},
|
988 |
+
"mmlu_global_facts": {
|
989 |
+
"task": "mmlu_global_facts",
|
990 |
+
"task_alias": "global_facts",
|
991 |
+
"group": "mmlu_other",
|
992 |
+
"group_alias": "other",
|
993 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
994 |
+
"dataset_name": "global_facts",
|
995 |
+
"test_split": "test",
|
996 |
+
"fewshot_split": "dev",
|
997 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
998 |
+
"doc_to_target": "answer",
|
999 |
+
"doc_to_choice": [
|
1000 |
+
"A",
|
1001 |
+
"B",
|
1002 |
+
"C",
|
1003 |
+
"D"
|
1004 |
+
],
|
1005 |
+
"description": "The following are multiple choice questions (with answers) about global facts.\n\n",
|
1006 |
+
"target_delimiter": " ",
|
1007 |
+
"fewshot_delimiter": "\n\n",
|
1008 |
+
"fewshot_config": {
|
1009 |
+
"sampler": "first_n"
|
1010 |
+
},
|
1011 |
+
"num_fewshot": 5,
|
1012 |
+
"metric_list": [
|
1013 |
+
{
|
1014 |
+
"metric": "acc",
|
1015 |
+
"aggregation": "mean",
|
1016 |
+
"higher_is_better": true
|
1017 |
+
}
|
1018 |
+
],
|
1019 |
+
"output_type": "multiple_choice",
|
1020 |
+
"repeats": 1,
|
1021 |
+
"should_decontaminate": false,
|
1022 |
+
"metadata": {
|
1023 |
+
"version": 0.0
|
1024 |
+
}
|
1025 |
+
},
|
1026 |
+
"mmlu_high_school_biology": {
|
1027 |
+
"task": "mmlu_high_school_biology",
|
1028 |
+
"task_alias": "high_school_biology",
|
1029 |
+
"group": "mmlu_stem",
|
1030 |
+
"group_alias": "stem",
|
1031 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1032 |
+
"dataset_name": "high_school_biology",
|
1033 |
+
"test_split": "test",
|
1034 |
+
"fewshot_split": "dev",
|
1035 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1036 |
+
"doc_to_target": "answer",
|
1037 |
+
"doc_to_choice": [
|
1038 |
+
"A",
|
1039 |
+
"B",
|
1040 |
+
"C",
|
1041 |
+
"D"
|
1042 |
+
],
|
1043 |
+
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
|
1044 |
+
"target_delimiter": " ",
|
1045 |
+
"fewshot_delimiter": "\n\n",
|
1046 |
+
"fewshot_config": {
|
1047 |
+
"sampler": "first_n"
|
1048 |
+
},
|
1049 |
+
"num_fewshot": 5,
|
1050 |
+
"metric_list": [
|
1051 |
+
{
|
1052 |
+
"metric": "acc",
|
1053 |
+
"aggregation": "mean",
|
1054 |
+
"higher_is_better": true
|
1055 |
+
}
|
1056 |
+
],
|
1057 |
+
"output_type": "multiple_choice",
|
1058 |
+
"repeats": 1,
|
1059 |
+
"should_decontaminate": false,
|
1060 |
+
"metadata": {
|
1061 |
+
"version": 0.0
|
1062 |
+
}
|
1063 |
+
},
|
1064 |
+
"mmlu_high_school_chemistry": {
|
1065 |
+
"task": "mmlu_high_school_chemistry",
|
1066 |
+
"task_alias": "high_school_chemistry",
|
1067 |
+
"group": "mmlu_stem",
|
1068 |
+
"group_alias": "stem",
|
1069 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1070 |
+
"dataset_name": "high_school_chemistry",
|
1071 |
+
"test_split": "test",
|
1072 |
+
"fewshot_split": "dev",
|
1073 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1074 |
+
"doc_to_target": "answer",
|
1075 |
+
"doc_to_choice": [
|
1076 |
+
"A",
|
1077 |
+
"B",
|
1078 |
+
"C",
|
1079 |
+
"D"
|
1080 |
+
],
|
1081 |
+
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
|
1082 |
+
"target_delimiter": " ",
|
1083 |
+
"fewshot_delimiter": "\n\n",
|
1084 |
+
"fewshot_config": {
|
1085 |
+
"sampler": "first_n"
|
1086 |
+
},
|
1087 |
+
"num_fewshot": 5,
|
1088 |
+
"metric_list": [
|
1089 |
+
{
|
1090 |
+
"metric": "acc",
|
1091 |
+
"aggregation": "mean",
|
1092 |
+
"higher_is_better": true
|
1093 |
+
}
|
1094 |
+
],
|
1095 |
+
"output_type": "multiple_choice",
|
1096 |
+
"repeats": 1,
|
1097 |
+
"should_decontaminate": false,
|
1098 |
+
"metadata": {
|
1099 |
+
"version": 0.0
|
1100 |
+
}
|
1101 |
+
},
|
1102 |
+
"mmlu_high_school_computer_science": {
|
1103 |
+
"task": "mmlu_high_school_computer_science",
|
1104 |
+
"task_alias": "high_school_computer_science",
|
1105 |
+
"group": "mmlu_stem",
|
1106 |
+
"group_alias": "stem",
|
1107 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1108 |
+
"dataset_name": "high_school_computer_science",
|
1109 |
+
"test_split": "test",
|
1110 |
+
"fewshot_split": "dev",
|
1111 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1112 |
+
"doc_to_target": "answer",
|
1113 |
+
"doc_to_choice": [
|
1114 |
+
"A",
|
1115 |
+
"B",
|
1116 |
+
"C",
|
1117 |
+
"D"
|
1118 |
+
],
|
1119 |
+
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
|
1120 |
+
"target_delimiter": " ",
|
1121 |
+
"fewshot_delimiter": "\n\n",
|
1122 |
+
"fewshot_config": {
|
1123 |
+
"sampler": "first_n"
|
1124 |
+
},
|
1125 |
+
"num_fewshot": 5,
|
1126 |
+
"metric_list": [
|
1127 |
+
{
|
1128 |
+
"metric": "acc",
|
1129 |
+
"aggregation": "mean",
|
1130 |
+
"higher_is_better": true
|
1131 |
+
}
|
1132 |
+
],
|
1133 |
+
"output_type": "multiple_choice",
|
1134 |
+
"repeats": 1,
|
1135 |
+
"should_decontaminate": false,
|
1136 |
+
"metadata": {
|
1137 |
+
"version": 0.0
|
1138 |
+
}
|
1139 |
+
},
|
1140 |
+
"mmlu_high_school_european_history": {
|
1141 |
+
"task": "mmlu_high_school_european_history",
|
1142 |
+
"task_alias": "high_school_european_history",
|
1143 |
+
"group": "mmlu_humanities",
|
1144 |
+
"group_alias": "humanities",
|
1145 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1146 |
+
"dataset_name": "high_school_european_history",
|
1147 |
+
"test_split": "test",
|
1148 |
+
"fewshot_split": "dev",
|
1149 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1150 |
+
"doc_to_target": "answer",
|
1151 |
+
"doc_to_choice": [
|
1152 |
+
"A",
|
1153 |
+
"B",
|
1154 |
+
"C",
|
1155 |
+
"D"
|
1156 |
+
],
|
1157 |
+
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
|
1158 |
+
"target_delimiter": " ",
|
1159 |
+
"fewshot_delimiter": "\n\n",
|
1160 |
+
"fewshot_config": {
|
1161 |
+
"sampler": "first_n"
|
1162 |
+
},
|
1163 |
+
"num_fewshot": 5,
|
1164 |
+
"metric_list": [
|
1165 |
+
{
|
1166 |
+
"metric": "acc",
|
1167 |
+
"aggregation": "mean",
|
1168 |
+
"higher_is_better": true
|
1169 |
+
}
|
1170 |
+
],
|
1171 |
+
"output_type": "multiple_choice",
|
1172 |
+
"repeats": 1,
|
1173 |
+
"should_decontaminate": false,
|
1174 |
+
"metadata": {
|
1175 |
+
"version": 0.0
|
1176 |
+
}
|
1177 |
+
},
|
1178 |
+
"mmlu_high_school_geography": {
|
1179 |
+
"task": "mmlu_high_school_geography",
|
1180 |
+
"task_alias": "high_school_geography",
|
1181 |
+
"group": "mmlu_social_sciences",
|
1182 |
+
"group_alias": "social_sciences",
|
1183 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1184 |
+
"dataset_name": "high_school_geography",
|
1185 |
+
"test_split": "test",
|
1186 |
+
"fewshot_split": "dev",
|
1187 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1188 |
+
"doc_to_target": "answer",
|
1189 |
+
"doc_to_choice": [
|
1190 |
+
"A",
|
1191 |
+
"B",
|
1192 |
+
"C",
|
1193 |
+
"D"
|
1194 |
+
],
|
1195 |
+
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
|
1196 |
+
"target_delimiter": " ",
|
1197 |
+
"fewshot_delimiter": "\n\n",
|
1198 |
+
"fewshot_config": {
|
1199 |
+
"sampler": "first_n"
|
1200 |
+
},
|
1201 |
+
"num_fewshot": 5,
|
1202 |
+
"metric_list": [
|
1203 |
+
{
|
1204 |
+
"metric": "acc",
|
1205 |
+
"aggregation": "mean",
|
1206 |
+
"higher_is_better": true
|
1207 |
+
}
|
1208 |
+
],
|
1209 |
+
"output_type": "multiple_choice",
|
1210 |
+
"repeats": 1,
|
1211 |
+
"should_decontaminate": false,
|
1212 |
+
"metadata": {
|
1213 |
+
"version": 0.0
|
1214 |
+
}
|
1215 |
+
},
|
1216 |
+
"mmlu_high_school_government_and_politics": {
|
1217 |
+
"task": "mmlu_high_school_government_and_politics",
|
1218 |
+
"task_alias": "high_school_government_and_politics",
|
1219 |
+
"group": "mmlu_social_sciences",
|
1220 |
+
"group_alias": "social_sciences",
|
1221 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1222 |
+
"dataset_name": "high_school_government_and_politics",
|
1223 |
+
"test_split": "test",
|
1224 |
+
"fewshot_split": "dev",
|
1225 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1226 |
+
"doc_to_target": "answer",
|
1227 |
+
"doc_to_choice": [
|
1228 |
+
"A",
|
1229 |
+
"B",
|
1230 |
+
"C",
|
1231 |
+
"D"
|
1232 |
+
],
|
1233 |
+
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
|
1234 |
+
"target_delimiter": " ",
|
1235 |
+
"fewshot_delimiter": "\n\n",
|
1236 |
+
"fewshot_config": {
|
1237 |
+
"sampler": "first_n"
|
1238 |
+
},
|
1239 |
+
"num_fewshot": 5,
|
1240 |
+
"metric_list": [
|
1241 |
+
{
|
1242 |
+
"metric": "acc",
|
1243 |
+
"aggregation": "mean",
|
1244 |
+
"higher_is_better": true
|
1245 |
+
}
|
1246 |
+
],
|
1247 |
+
"output_type": "multiple_choice",
|
1248 |
+
"repeats": 1,
|
1249 |
+
"should_decontaminate": false,
|
1250 |
+
"metadata": {
|
1251 |
+
"version": 0.0
|
1252 |
+
}
|
1253 |
+
},
|
1254 |
+
"mmlu_high_school_macroeconomics": {
|
1255 |
+
"task": "mmlu_high_school_macroeconomics",
|
1256 |
+
"task_alias": "high_school_macroeconomics",
|
1257 |
+
"group": "mmlu_social_sciences",
|
1258 |
+
"group_alias": "social_sciences",
|
1259 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1260 |
+
"dataset_name": "high_school_macroeconomics",
|
1261 |
+
"test_split": "test",
|
1262 |
+
"fewshot_split": "dev",
|
1263 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1264 |
+
"doc_to_target": "answer",
|
1265 |
+
"doc_to_choice": [
|
1266 |
+
"A",
|
1267 |
+
"B",
|
1268 |
+
"C",
|
1269 |
+
"D"
|
1270 |
+
],
|
1271 |
+
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
|
1272 |
+
"target_delimiter": " ",
|
1273 |
+
"fewshot_delimiter": "\n\n",
|
1274 |
+
"fewshot_config": {
|
1275 |
+
"sampler": "first_n"
|
1276 |
+
},
|
1277 |
+
"num_fewshot": 5,
|
1278 |
+
"metric_list": [
|
1279 |
+
{
|
1280 |
+
"metric": "acc",
|
1281 |
+
"aggregation": "mean",
|
1282 |
+
"higher_is_better": true
|
1283 |
+
}
|
1284 |
+
],
|
1285 |
+
"output_type": "multiple_choice",
|
1286 |
+
"repeats": 1,
|
1287 |
+
"should_decontaminate": false,
|
1288 |
+
"metadata": {
|
1289 |
+
"version": 0.0
|
1290 |
+
}
|
1291 |
+
},
|
1292 |
+
"mmlu_high_school_mathematics": {
|
1293 |
+
"task": "mmlu_high_school_mathematics",
|
1294 |
+
"task_alias": "high_school_mathematics",
|
1295 |
+
"group": "mmlu_stem",
|
1296 |
+
"group_alias": "stem",
|
1297 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1298 |
+
"dataset_name": "high_school_mathematics",
|
1299 |
+
"test_split": "test",
|
1300 |
+
"fewshot_split": "dev",
|
1301 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1302 |
+
"doc_to_target": "answer",
|
1303 |
+
"doc_to_choice": [
|
1304 |
+
"A",
|
1305 |
+
"B",
|
1306 |
+
"C",
|
1307 |
+
"D"
|
1308 |
+
],
|
1309 |
+
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
|
1310 |
+
"target_delimiter": " ",
|
1311 |
+
"fewshot_delimiter": "\n\n",
|
1312 |
+
"fewshot_config": {
|
1313 |
+
"sampler": "first_n"
|
1314 |
+
},
|
1315 |
+
"num_fewshot": 5,
|
1316 |
+
"metric_list": [
|
1317 |
+
{
|
1318 |
+
"metric": "acc",
|
1319 |
+
"aggregation": "mean",
|
1320 |
+
"higher_is_better": true
|
1321 |
+
}
|
1322 |
+
],
|
1323 |
+
"output_type": "multiple_choice",
|
1324 |
+
"repeats": 1,
|
1325 |
+
"should_decontaminate": false,
|
1326 |
+
"metadata": {
|
1327 |
+
"version": 0.0
|
1328 |
+
}
|
1329 |
+
},
|
1330 |
+
"mmlu_high_school_microeconomics": {
|
1331 |
+
"task": "mmlu_high_school_microeconomics",
|
1332 |
+
"task_alias": "high_school_microeconomics",
|
1333 |
+
"group": "mmlu_social_sciences",
|
1334 |
+
"group_alias": "social_sciences",
|
1335 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1336 |
+
"dataset_name": "high_school_microeconomics",
|
1337 |
+
"test_split": "test",
|
1338 |
+
"fewshot_split": "dev",
|
1339 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1340 |
+
"doc_to_target": "answer",
|
1341 |
+
"doc_to_choice": [
|
1342 |
+
"A",
|
1343 |
+
"B",
|
1344 |
+
"C",
|
1345 |
+
"D"
|
1346 |
+
],
|
1347 |
+
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
|
1348 |
+
"target_delimiter": " ",
|
1349 |
+
"fewshot_delimiter": "\n\n",
|
1350 |
+
"fewshot_config": {
|
1351 |
+
"sampler": "first_n"
|
1352 |
+
},
|
1353 |
+
"num_fewshot": 5,
|
1354 |
+
"metric_list": [
|
1355 |
+
{
|
1356 |
+
"metric": "acc",
|
1357 |
+
"aggregation": "mean",
|
1358 |
+
"higher_is_better": true
|
1359 |
+
}
|
1360 |
+
],
|
1361 |
+
"output_type": "multiple_choice",
|
1362 |
+
"repeats": 1,
|
1363 |
+
"should_decontaminate": false,
|
1364 |
+
"metadata": {
|
1365 |
+
"version": 0.0
|
1366 |
+
}
|
1367 |
+
},
|
1368 |
+
"mmlu_high_school_physics": {
|
1369 |
+
"task": "mmlu_high_school_physics",
|
1370 |
+
"task_alias": "high_school_physics",
|
1371 |
+
"group": "mmlu_stem",
|
1372 |
+
"group_alias": "stem",
|
1373 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1374 |
+
"dataset_name": "high_school_physics",
|
1375 |
+
"test_split": "test",
|
1376 |
+
"fewshot_split": "dev",
|
1377 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1378 |
+
"doc_to_target": "answer",
|
1379 |
+
"doc_to_choice": [
|
1380 |
+
"A",
|
1381 |
+
"B",
|
1382 |
+
"C",
|
1383 |
+
"D"
|
1384 |
+
],
|
1385 |
+
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
|
1386 |
+
"target_delimiter": " ",
|
1387 |
+
"fewshot_delimiter": "\n\n",
|
1388 |
+
"fewshot_config": {
|
1389 |
+
"sampler": "first_n"
|
1390 |
+
},
|
1391 |
+
"num_fewshot": 5,
|
1392 |
+
"metric_list": [
|
1393 |
+
{
|
1394 |
+
"metric": "acc",
|
1395 |
+
"aggregation": "mean",
|
1396 |
+
"higher_is_better": true
|
1397 |
+
}
|
1398 |
+
],
|
1399 |
+
"output_type": "multiple_choice",
|
1400 |
+
"repeats": 1,
|
1401 |
+
"should_decontaminate": false,
|
1402 |
+
"metadata": {
|
1403 |
+
"version": 0.0
|
1404 |
+
}
|
1405 |
+
},
|
1406 |
+
"mmlu_high_school_psychology": {
|
1407 |
+
"task": "mmlu_high_school_psychology",
|
1408 |
+
"task_alias": "high_school_psychology",
|
1409 |
+
"group": "mmlu_social_sciences",
|
1410 |
+
"group_alias": "social_sciences",
|
1411 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1412 |
+
"dataset_name": "high_school_psychology",
|
1413 |
+
"test_split": "test",
|
1414 |
+
"fewshot_split": "dev",
|
1415 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1416 |
+
"doc_to_target": "answer",
|
1417 |
+
"doc_to_choice": [
|
1418 |
+
"A",
|
1419 |
+
"B",
|
1420 |
+
"C",
|
1421 |
+
"D"
|
1422 |
+
],
|
1423 |
+
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
|
1424 |
+
"target_delimiter": " ",
|
1425 |
+
"fewshot_delimiter": "\n\n",
|
1426 |
+
"fewshot_config": {
|
1427 |
+
"sampler": "first_n"
|
1428 |
+
},
|
1429 |
+
"num_fewshot": 5,
|
1430 |
+
"metric_list": [
|
1431 |
+
{
|
1432 |
+
"metric": "acc",
|
1433 |
+
"aggregation": "mean",
|
1434 |
+
"higher_is_better": true
|
1435 |
+
}
|
1436 |
+
],
|
1437 |
+
"output_type": "multiple_choice",
|
1438 |
+
"repeats": 1,
|
1439 |
+
"should_decontaminate": false,
|
1440 |
+
"metadata": {
|
1441 |
+
"version": 0.0
|
1442 |
+
}
|
1443 |
+
},
|
1444 |
+
"mmlu_high_school_statistics": {
|
1445 |
+
"task": "mmlu_high_school_statistics",
|
1446 |
+
"task_alias": "high_school_statistics",
|
1447 |
+
"group": "mmlu_stem",
|
1448 |
+
"group_alias": "stem",
|
1449 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1450 |
+
"dataset_name": "high_school_statistics",
|
1451 |
+
"test_split": "test",
|
1452 |
+
"fewshot_split": "dev",
|
1453 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1454 |
+
"doc_to_target": "answer",
|
1455 |
+
"doc_to_choice": [
|
1456 |
+
"A",
|
1457 |
+
"B",
|
1458 |
+
"C",
|
1459 |
+
"D"
|
1460 |
+
],
|
1461 |
+
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
|
1462 |
+
"target_delimiter": " ",
|
1463 |
+
"fewshot_delimiter": "\n\n",
|
1464 |
+
"fewshot_config": {
|
1465 |
+
"sampler": "first_n"
|
1466 |
+
},
|
1467 |
+
"num_fewshot": 5,
|
1468 |
+
"metric_list": [
|
1469 |
+
{
|
1470 |
+
"metric": "acc",
|
1471 |
+
"aggregation": "mean",
|
1472 |
+
"higher_is_better": true
|
1473 |
+
}
|
1474 |
+
],
|
1475 |
+
"output_type": "multiple_choice",
|
1476 |
+
"repeats": 1,
|
1477 |
+
"should_decontaminate": false,
|
1478 |
+
"metadata": {
|
1479 |
+
"version": 0.0
|
1480 |
+
}
|
1481 |
+
},
|
1482 |
+
"mmlu_high_school_us_history": {
|
1483 |
+
"task": "mmlu_high_school_us_history",
|
1484 |
+
"task_alias": "high_school_us_history",
|
1485 |
+
"group": "mmlu_humanities",
|
1486 |
+
"group_alias": "humanities",
|
1487 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1488 |
+
"dataset_name": "high_school_us_history",
|
1489 |
+
"test_split": "test",
|
1490 |
+
"fewshot_split": "dev",
|
1491 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1492 |
+
"doc_to_target": "answer",
|
1493 |
+
"doc_to_choice": [
|
1494 |
+
"A",
|
1495 |
+
"B",
|
1496 |
+
"C",
|
1497 |
+
"D"
|
1498 |
+
],
|
1499 |
+
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
|
1500 |
+
"target_delimiter": " ",
|
1501 |
+
"fewshot_delimiter": "\n\n",
|
1502 |
+
"fewshot_config": {
|
1503 |
+
"sampler": "first_n"
|
1504 |
+
},
|
1505 |
+
"num_fewshot": 5,
|
1506 |
+
"metric_list": [
|
1507 |
+
{
|
1508 |
+
"metric": "acc",
|
1509 |
+
"aggregation": "mean",
|
1510 |
+
"higher_is_better": true
|
1511 |
+
}
|
1512 |
+
],
|
1513 |
+
"output_type": "multiple_choice",
|
1514 |
+
"repeats": 1,
|
1515 |
+
"should_decontaminate": false,
|
1516 |
+
"metadata": {
|
1517 |
+
"version": 0.0
|
1518 |
+
}
|
1519 |
+
},
|
1520 |
+
"mmlu_high_school_world_history": {
|
1521 |
+
"task": "mmlu_high_school_world_history",
|
1522 |
+
"task_alias": "high_school_world_history",
|
1523 |
+
"group": "mmlu_humanities",
|
1524 |
+
"group_alias": "humanities",
|
1525 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1526 |
+
"dataset_name": "high_school_world_history",
|
1527 |
+
"test_split": "test",
|
1528 |
+
"fewshot_split": "dev",
|
1529 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1530 |
+
"doc_to_target": "answer",
|
1531 |
+
"doc_to_choice": [
|
1532 |
+
"A",
|
1533 |
+
"B",
|
1534 |
+
"C",
|
1535 |
+
"D"
|
1536 |
+
],
|
1537 |
+
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
|
1538 |
+
"target_delimiter": " ",
|
1539 |
+
"fewshot_delimiter": "\n\n",
|
1540 |
+
"fewshot_config": {
|
1541 |
+
"sampler": "first_n"
|
1542 |
+
},
|
1543 |
+
"num_fewshot": 5,
|
1544 |
+
"metric_list": [
|
1545 |
+
{
|
1546 |
+
"metric": "acc",
|
1547 |
+
"aggregation": "mean",
|
1548 |
+
"higher_is_better": true
|
1549 |
+
}
|
1550 |
+
],
|
1551 |
+
"output_type": "multiple_choice",
|
1552 |
+
"repeats": 1,
|
1553 |
+
"should_decontaminate": false,
|
1554 |
+
"metadata": {
|
1555 |
+
"version": 0.0
|
1556 |
+
}
|
1557 |
+
},
|
1558 |
+
"mmlu_human_aging": {
|
1559 |
+
"task": "mmlu_human_aging",
|
1560 |
+
"task_alias": "human_aging",
|
1561 |
+
"group": "mmlu_other",
|
1562 |
+
"group_alias": "other",
|
1563 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1564 |
+
"dataset_name": "human_aging",
|
1565 |
+
"test_split": "test",
|
1566 |
+
"fewshot_split": "dev",
|
1567 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1568 |
+
"doc_to_target": "answer",
|
1569 |
+
"doc_to_choice": [
|
1570 |
+
"A",
|
1571 |
+
"B",
|
1572 |
+
"C",
|
1573 |
+
"D"
|
1574 |
+
],
|
1575 |
+
"description": "The following are multiple choice questions (with answers) about human aging.\n\n",
|
1576 |
+
"target_delimiter": " ",
|
1577 |
+
"fewshot_delimiter": "\n\n",
|
1578 |
+
"fewshot_config": {
|
1579 |
+
"sampler": "first_n"
|
1580 |
+
},
|
1581 |
+
"num_fewshot": 5,
|
1582 |
+
"metric_list": [
|
1583 |
+
{
|
1584 |
+
"metric": "acc",
|
1585 |
+
"aggregation": "mean",
|
1586 |
+
"higher_is_better": true
|
1587 |
+
}
|
1588 |
+
],
|
1589 |
+
"output_type": "multiple_choice",
|
1590 |
+
"repeats": 1,
|
1591 |
+
"should_decontaminate": false,
|
1592 |
+
"metadata": {
|
1593 |
+
"version": 0.0
|
1594 |
+
}
|
1595 |
+
},
|
1596 |
+
"mmlu_human_sexuality": {
|
1597 |
+
"task": "mmlu_human_sexuality",
|
1598 |
+
"task_alias": "human_sexuality",
|
1599 |
+
"group": "mmlu_social_sciences",
|
1600 |
+
"group_alias": "social_sciences",
|
1601 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1602 |
+
"dataset_name": "human_sexuality",
|
1603 |
+
"test_split": "test",
|
1604 |
+
"fewshot_split": "dev",
|
1605 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1606 |
+
"doc_to_target": "answer",
|
1607 |
+
"doc_to_choice": [
|
1608 |
+
"A",
|
1609 |
+
"B",
|
1610 |
+
"C",
|
1611 |
+
"D"
|
1612 |
+
],
|
1613 |
+
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
|
1614 |
+
"target_delimiter": " ",
|
1615 |
+
"fewshot_delimiter": "\n\n",
|
1616 |
+
"fewshot_config": {
|
1617 |
+
"sampler": "first_n"
|
1618 |
+
},
|
1619 |
+
"num_fewshot": 5,
|
1620 |
+
"metric_list": [
|
1621 |
+
{
|
1622 |
+
"metric": "acc",
|
1623 |
+
"aggregation": "mean",
|
1624 |
+
"higher_is_better": true
|
1625 |
+
}
|
1626 |
+
],
|
1627 |
+
"output_type": "multiple_choice",
|
1628 |
+
"repeats": 1,
|
1629 |
+
"should_decontaminate": false,
|
1630 |
+
"metadata": {
|
1631 |
+
"version": 0.0
|
1632 |
+
}
|
1633 |
+
},
|
1634 |
+
"mmlu_international_law": {
|
1635 |
+
"task": "mmlu_international_law",
|
1636 |
+
"task_alias": "international_law",
|
1637 |
+
"group": "mmlu_humanities",
|
1638 |
+
"group_alias": "humanities",
|
1639 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1640 |
+
"dataset_name": "international_law",
|
1641 |
+
"test_split": "test",
|
1642 |
+
"fewshot_split": "dev",
|
1643 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1644 |
+
"doc_to_target": "answer",
|
1645 |
+
"doc_to_choice": [
|
1646 |
+
"A",
|
1647 |
+
"B",
|
1648 |
+
"C",
|
1649 |
+
"D"
|
1650 |
+
],
|
1651 |
+
"description": "The following are multiple choice questions (with answers) about international law.\n\n",
|
1652 |
+
"target_delimiter": " ",
|
1653 |
+
"fewshot_delimiter": "\n\n",
|
1654 |
+
"fewshot_config": {
|
1655 |
+
"sampler": "first_n"
|
1656 |
+
},
|
1657 |
+
"num_fewshot": 5,
|
1658 |
+
"metric_list": [
|
1659 |
+
{
|
1660 |
+
"metric": "acc",
|
1661 |
+
"aggregation": "mean",
|
1662 |
+
"higher_is_better": true
|
1663 |
+
}
|
1664 |
+
],
|
1665 |
+
"output_type": "multiple_choice",
|
1666 |
+
"repeats": 1,
|
1667 |
+
"should_decontaminate": false,
|
1668 |
+
"metadata": {
|
1669 |
+
"version": 0.0
|
1670 |
+
}
|
1671 |
+
},
|
1672 |
+
"mmlu_jurisprudence": {
|
1673 |
+
"task": "mmlu_jurisprudence",
|
1674 |
+
"task_alias": "jurisprudence",
|
1675 |
+
"group": "mmlu_humanities",
|
1676 |
+
"group_alias": "humanities",
|
1677 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1678 |
+
"dataset_name": "jurisprudence",
|
1679 |
+
"test_split": "test",
|
1680 |
+
"fewshot_split": "dev",
|
1681 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1682 |
+
"doc_to_target": "answer",
|
1683 |
+
"doc_to_choice": [
|
1684 |
+
"A",
|
1685 |
+
"B",
|
1686 |
+
"C",
|
1687 |
+
"D"
|
1688 |
+
],
|
1689 |
+
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
|
1690 |
+
"target_delimiter": " ",
|
1691 |
+
"fewshot_delimiter": "\n\n",
|
1692 |
+
"fewshot_config": {
|
1693 |
+
"sampler": "first_n"
|
1694 |
+
},
|
1695 |
+
"num_fewshot": 5,
|
1696 |
+
"metric_list": [
|
1697 |
+
{
|
1698 |
+
"metric": "acc",
|
1699 |
+
"aggregation": "mean",
|
1700 |
+
"higher_is_better": true
|
1701 |
+
}
|
1702 |
+
],
|
1703 |
+
"output_type": "multiple_choice",
|
1704 |
+
"repeats": 1,
|
1705 |
+
"should_decontaminate": false,
|
1706 |
+
"metadata": {
|
1707 |
+
"version": 0.0
|
1708 |
+
}
|
1709 |
+
},
|
1710 |
+
"mmlu_logical_fallacies": {
|
1711 |
+
"task": "mmlu_logical_fallacies",
|
1712 |
+
"task_alias": "logical_fallacies",
|
1713 |
+
"group": "mmlu_humanities",
|
1714 |
+
"group_alias": "humanities",
|
1715 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1716 |
+
"dataset_name": "logical_fallacies",
|
1717 |
+
"test_split": "test",
|
1718 |
+
"fewshot_split": "dev",
|
1719 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1720 |
+
"doc_to_target": "answer",
|
1721 |
+
"doc_to_choice": [
|
1722 |
+
"A",
|
1723 |
+
"B",
|
1724 |
+
"C",
|
1725 |
+
"D"
|
1726 |
+
],
|
1727 |
+
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
|
1728 |
+
"target_delimiter": " ",
|
1729 |
+
"fewshot_delimiter": "\n\n",
|
1730 |
+
"fewshot_config": {
|
1731 |
+
"sampler": "first_n"
|
1732 |
+
},
|
1733 |
+
"num_fewshot": 5,
|
1734 |
+
"metric_list": [
|
1735 |
+
{
|
1736 |
+
"metric": "acc",
|
1737 |
+
"aggregation": "mean",
|
1738 |
+
"higher_is_better": true
|
1739 |
+
}
|
1740 |
+
],
|
1741 |
+
"output_type": "multiple_choice",
|
1742 |
+
"repeats": 1,
|
1743 |
+
"should_decontaminate": false,
|
1744 |
+
"metadata": {
|
1745 |
+
"version": 0.0
|
1746 |
+
}
|
1747 |
+
},
|
1748 |
+
"mmlu_machine_learning": {
|
1749 |
+
"task": "mmlu_machine_learning",
|
1750 |
+
"task_alias": "machine_learning",
|
1751 |
+
"group": "mmlu_stem",
|
1752 |
+
"group_alias": "stem",
|
1753 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1754 |
+
"dataset_name": "machine_learning",
|
1755 |
+
"test_split": "test",
|
1756 |
+
"fewshot_split": "dev",
|
1757 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1758 |
+
"doc_to_target": "answer",
|
1759 |
+
"doc_to_choice": [
|
1760 |
+
"A",
|
1761 |
+
"B",
|
1762 |
+
"C",
|
1763 |
+
"D"
|
1764 |
+
],
|
1765 |
+
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
|
1766 |
+
"target_delimiter": " ",
|
1767 |
+
"fewshot_delimiter": "\n\n",
|
1768 |
+
"fewshot_config": {
|
1769 |
+
"sampler": "first_n"
|
1770 |
+
},
|
1771 |
+
"num_fewshot": 5,
|
1772 |
+
"metric_list": [
|
1773 |
+
{
|
1774 |
+
"metric": "acc",
|
1775 |
+
"aggregation": "mean",
|
1776 |
+
"higher_is_better": true
|
1777 |
+
}
|
1778 |
+
],
|
1779 |
+
"output_type": "multiple_choice",
|
1780 |
+
"repeats": 1,
|
1781 |
+
"should_decontaminate": false,
|
1782 |
+
"metadata": {
|
1783 |
+
"version": 0.0
|
1784 |
+
}
|
1785 |
+
},
|
1786 |
+
"mmlu_management": {
|
1787 |
+
"task": "mmlu_management",
|
1788 |
+
"task_alias": "management",
|
1789 |
+
"group": "mmlu_other",
|
1790 |
+
"group_alias": "other",
|
1791 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1792 |
+
"dataset_name": "management",
|
1793 |
+
"test_split": "test",
|
1794 |
+
"fewshot_split": "dev",
|
1795 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1796 |
+
"doc_to_target": "answer",
|
1797 |
+
"doc_to_choice": [
|
1798 |
+
"A",
|
1799 |
+
"B",
|
1800 |
+
"C",
|
1801 |
+
"D"
|
1802 |
+
],
|
1803 |
+
"description": "The following are multiple choice questions (with answers) about management.\n\n",
|
1804 |
+
"target_delimiter": " ",
|
1805 |
+
"fewshot_delimiter": "\n\n",
|
1806 |
+
"fewshot_config": {
|
1807 |
+
"sampler": "first_n"
|
1808 |
+
},
|
1809 |
+
"num_fewshot": 5,
|
1810 |
+
"metric_list": [
|
1811 |
+
{
|
1812 |
+
"metric": "acc",
|
1813 |
+
"aggregation": "mean",
|
1814 |
+
"higher_is_better": true
|
1815 |
+
}
|
1816 |
+
],
|
1817 |
+
"output_type": "multiple_choice",
|
1818 |
+
"repeats": 1,
|
1819 |
+
"should_decontaminate": false,
|
1820 |
+
"metadata": {
|
1821 |
+
"version": 0.0
|
1822 |
+
}
|
1823 |
+
},
|
1824 |
+
"mmlu_marketing": {
|
1825 |
+
"task": "mmlu_marketing",
|
1826 |
+
"task_alias": "marketing",
|
1827 |
+
"group": "mmlu_other",
|
1828 |
+
"group_alias": "other",
|
1829 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1830 |
+
"dataset_name": "marketing",
|
1831 |
+
"test_split": "test",
|
1832 |
+
"fewshot_split": "dev",
|
1833 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1834 |
+
"doc_to_target": "answer",
|
1835 |
+
"doc_to_choice": [
|
1836 |
+
"A",
|
1837 |
+
"B",
|
1838 |
+
"C",
|
1839 |
+
"D"
|
1840 |
+
],
|
1841 |
+
"description": "The following are multiple choice questions (with answers) about marketing.\n\n",
|
1842 |
+
"target_delimiter": " ",
|
1843 |
+
"fewshot_delimiter": "\n\n",
|
1844 |
+
"fewshot_config": {
|
1845 |
+
"sampler": "first_n"
|
1846 |
+
},
|
1847 |
+
"num_fewshot": 5,
|
1848 |
+
"metric_list": [
|
1849 |
+
{
|
1850 |
+
"metric": "acc",
|
1851 |
+
"aggregation": "mean",
|
1852 |
+
"higher_is_better": true
|
1853 |
+
}
|
1854 |
+
],
|
1855 |
+
"output_type": "multiple_choice",
|
1856 |
+
"repeats": 1,
|
1857 |
+
"should_decontaminate": false,
|
1858 |
+
"metadata": {
|
1859 |
+
"version": 0.0
|
1860 |
+
}
|
1861 |
+
},
|
1862 |
+
"mmlu_medical_genetics": {
|
1863 |
+
"task": "mmlu_medical_genetics",
|
1864 |
+
"task_alias": "medical_genetics",
|
1865 |
+
"group": "mmlu_other",
|
1866 |
+
"group_alias": "other",
|
1867 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1868 |
+
"dataset_name": "medical_genetics",
|
1869 |
+
"test_split": "test",
|
1870 |
+
"fewshot_split": "dev",
|
1871 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1872 |
+
"doc_to_target": "answer",
|
1873 |
+
"doc_to_choice": [
|
1874 |
+
"A",
|
1875 |
+
"B",
|
1876 |
+
"C",
|
1877 |
+
"D"
|
1878 |
+
],
|
1879 |
+
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
|
1880 |
+
"target_delimiter": " ",
|
1881 |
+
"fewshot_delimiter": "\n\n",
|
1882 |
+
"fewshot_config": {
|
1883 |
+
"sampler": "first_n"
|
1884 |
+
},
|
1885 |
+
"num_fewshot": 5,
|
1886 |
+
"metric_list": [
|
1887 |
+
{
|
1888 |
+
"metric": "acc",
|
1889 |
+
"aggregation": "mean",
|
1890 |
+
"higher_is_better": true
|
1891 |
+
}
|
1892 |
+
],
|
1893 |
+
"output_type": "multiple_choice",
|
1894 |
+
"repeats": 1,
|
1895 |
+
"should_decontaminate": false,
|
1896 |
+
"metadata": {
|
1897 |
+
"version": 0.0
|
1898 |
+
}
|
1899 |
+
},
|
1900 |
+
"mmlu_miscellaneous": {
|
1901 |
+
"task": "mmlu_miscellaneous",
|
1902 |
+
"task_alias": "miscellaneous",
|
1903 |
+
"group": "mmlu_other",
|
1904 |
+
"group_alias": "other",
|
1905 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1906 |
+
"dataset_name": "miscellaneous",
|
1907 |
+
"test_split": "test",
|
1908 |
+
"fewshot_split": "dev",
|
1909 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1910 |
+
"doc_to_target": "answer",
|
1911 |
+
"doc_to_choice": [
|
1912 |
+
"A",
|
1913 |
+
"B",
|
1914 |
+
"C",
|
1915 |
+
"D"
|
1916 |
+
],
|
1917 |
+
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
|
1918 |
+
"target_delimiter": " ",
|
1919 |
+
"fewshot_delimiter": "\n\n",
|
1920 |
+
"fewshot_config": {
|
1921 |
+
"sampler": "first_n"
|
1922 |
+
},
|
1923 |
+
"num_fewshot": 5,
|
1924 |
+
"metric_list": [
|
1925 |
+
{
|
1926 |
+
"metric": "acc",
|
1927 |
+
"aggregation": "mean",
|
1928 |
+
"higher_is_better": true
|
1929 |
+
}
|
1930 |
+
],
|
1931 |
+
"output_type": "multiple_choice",
|
1932 |
+
"repeats": 1,
|
1933 |
+
"should_decontaminate": false,
|
1934 |
+
"metadata": {
|
1935 |
+
"version": 0.0
|
1936 |
+
}
|
1937 |
+
},
|
1938 |
+
"mmlu_moral_disputes": {
|
1939 |
+
"task": "mmlu_moral_disputes",
|
1940 |
+
"task_alias": "moral_disputes",
|
1941 |
+
"group": "mmlu_humanities",
|
1942 |
+
"group_alias": "humanities",
|
1943 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1944 |
+
"dataset_name": "moral_disputes",
|
1945 |
+
"test_split": "test",
|
1946 |
+
"fewshot_split": "dev",
|
1947 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1948 |
+
"doc_to_target": "answer",
|
1949 |
+
"doc_to_choice": [
|
1950 |
+
"A",
|
1951 |
+
"B",
|
1952 |
+
"C",
|
1953 |
+
"D"
|
1954 |
+
],
|
1955 |
+
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
|
1956 |
+
"target_delimiter": " ",
|
1957 |
+
"fewshot_delimiter": "\n\n",
|
1958 |
+
"fewshot_config": {
|
1959 |
+
"sampler": "first_n"
|
1960 |
+
},
|
1961 |
+
"num_fewshot": 5,
|
1962 |
+
"metric_list": [
|
1963 |
+
{
|
1964 |
+
"metric": "acc",
|
1965 |
+
"aggregation": "mean",
|
1966 |
+
"higher_is_better": true
|
1967 |
+
}
|
1968 |
+
],
|
1969 |
+
"output_type": "multiple_choice",
|
1970 |
+
"repeats": 1,
|
1971 |
+
"should_decontaminate": false,
|
1972 |
+
"metadata": {
|
1973 |
+
"version": 0.0
|
1974 |
+
}
|
1975 |
+
},
|
1976 |
+
"mmlu_moral_scenarios": {
|
1977 |
+
"task": "mmlu_moral_scenarios",
|
1978 |
+
"task_alias": "moral_scenarios",
|
1979 |
+
"group": "mmlu_humanities",
|
1980 |
+
"group_alias": "humanities",
|
1981 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
1982 |
+
"dataset_name": "moral_scenarios",
|
1983 |
+
"test_split": "test",
|
1984 |
+
"fewshot_split": "dev",
|
1985 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1986 |
+
"doc_to_target": "answer",
|
1987 |
+
"doc_to_choice": [
|
1988 |
+
"A",
|
1989 |
+
"B",
|
1990 |
+
"C",
|
1991 |
+
"D"
|
1992 |
+
],
|
1993 |
+
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
|
1994 |
+
"target_delimiter": " ",
|
1995 |
+
"fewshot_delimiter": "\n\n",
|
1996 |
+
"fewshot_config": {
|
1997 |
+
"sampler": "first_n"
|
1998 |
+
},
|
1999 |
+
"num_fewshot": 5,
|
2000 |
+
"metric_list": [
|
2001 |
+
{
|
2002 |
+
"metric": "acc",
|
2003 |
+
"aggregation": "mean",
|
2004 |
+
"higher_is_better": true
|
2005 |
+
}
|
2006 |
+
],
|
2007 |
+
"output_type": "multiple_choice",
|
2008 |
+
"repeats": 1,
|
2009 |
+
"should_decontaminate": false,
|
2010 |
+
"metadata": {
|
2011 |
+
"version": 0.0
|
2012 |
+
}
|
2013 |
+
},
|
2014 |
+
"mmlu_nutrition": {
|
2015 |
+
"task": "mmlu_nutrition",
|
2016 |
+
"task_alias": "nutrition",
|
2017 |
+
"group": "mmlu_other",
|
2018 |
+
"group_alias": "other",
|
2019 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2020 |
+
"dataset_name": "nutrition",
|
2021 |
+
"test_split": "test",
|
2022 |
+
"fewshot_split": "dev",
|
2023 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2024 |
+
"doc_to_target": "answer",
|
2025 |
+
"doc_to_choice": [
|
2026 |
+
"A",
|
2027 |
+
"B",
|
2028 |
+
"C",
|
2029 |
+
"D"
|
2030 |
+
],
|
2031 |
+
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
|
2032 |
+
"target_delimiter": " ",
|
2033 |
+
"fewshot_delimiter": "\n\n",
|
2034 |
+
"fewshot_config": {
|
2035 |
+
"sampler": "first_n"
|
2036 |
+
},
|
2037 |
+
"num_fewshot": 5,
|
2038 |
+
"metric_list": [
|
2039 |
+
{
|
2040 |
+
"metric": "acc",
|
2041 |
+
"aggregation": "mean",
|
2042 |
+
"higher_is_better": true
|
2043 |
+
}
|
2044 |
+
],
|
2045 |
+
"output_type": "multiple_choice",
|
2046 |
+
"repeats": 1,
|
2047 |
+
"should_decontaminate": false,
|
2048 |
+
"metadata": {
|
2049 |
+
"version": 0.0
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"mmlu_philosophy": {
|
2053 |
+
"task": "mmlu_philosophy",
|
2054 |
+
"task_alias": "philosophy",
|
2055 |
+
"group": "mmlu_humanities",
|
2056 |
+
"group_alias": "humanities",
|
2057 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2058 |
+
"dataset_name": "philosophy",
|
2059 |
+
"test_split": "test",
|
2060 |
+
"fewshot_split": "dev",
|
2061 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2062 |
+
"doc_to_target": "answer",
|
2063 |
+
"doc_to_choice": [
|
2064 |
+
"A",
|
2065 |
+
"B",
|
2066 |
+
"C",
|
2067 |
+
"D"
|
2068 |
+
],
|
2069 |
+
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
|
2070 |
+
"target_delimiter": " ",
|
2071 |
+
"fewshot_delimiter": "\n\n",
|
2072 |
+
"fewshot_config": {
|
2073 |
+
"sampler": "first_n"
|
2074 |
+
},
|
2075 |
+
"num_fewshot": 5,
|
2076 |
+
"metric_list": [
|
2077 |
+
{
|
2078 |
+
"metric": "acc",
|
2079 |
+
"aggregation": "mean",
|
2080 |
+
"higher_is_better": true
|
2081 |
+
}
|
2082 |
+
],
|
2083 |
+
"output_type": "multiple_choice",
|
2084 |
+
"repeats": 1,
|
2085 |
+
"should_decontaminate": false,
|
2086 |
+
"metadata": {
|
2087 |
+
"version": 0.0
|
2088 |
+
}
|
2089 |
+
},
|
2090 |
+
"mmlu_prehistory": {
|
2091 |
+
"task": "mmlu_prehistory",
|
2092 |
+
"task_alias": "prehistory",
|
2093 |
+
"group": "mmlu_humanities",
|
2094 |
+
"group_alias": "humanities",
|
2095 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2096 |
+
"dataset_name": "prehistory",
|
2097 |
+
"test_split": "test",
|
2098 |
+
"fewshot_split": "dev",
|
2099 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2100 |
+
"doc_to_target": "answer",
|
2101 |
+
"doc_to_choice": [
|
2102 |
+
"A",
|
2103 |
+
"B",
|
2104 |
+
"C",
|
2105 |
+
"D"
|
2106 |
+
],
|
2107 |
+
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
|
2108 |
+
"target_delimiter": " ",
|
2109 |
+
"fewshot_delimiter": "\n\n",
|
2110 |
+
"fewshot_config": {
|
2111 |
+
"sampler": "first_n"
|
2112 |
+
},
|
2113 |
+
"num_fewshot": 5,
|
2114 |
+
"metric_list": [
|
2115 |
+
{
|
2116 |
+
"metric": "acc",
|
2117 |
+
"aggregation": "mean",
|
2118 |
+
"higher_is_better": true
|
2119 |
+
}
|
2120 |
+
],
|
2121 |
+
"output_type": "multiple_choice",
|
2122 |
+
"repeats": 1,
|
2123 |
+
"should_decontaminate": false,
|
2124 |
+
"metadata": {
|
2125 |
+
"version": 0.0
|
2126 |
+
}
|
2127 |
+
},
|
2128 |
+
"mmlu_professional_accounting": {
|
2129 |
+
"task": "mmlu_professional_accounting",
|
2130 |
+
"task_alias": "professional_accounting",
|
2131 |
+
"group": "mmlu_other",
|
2132 |
+
"group_alias": "other",
|
2133 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2134 |
+
"dataset_name": "professional_accounting",
|
2135 |
+
"test_split": "test",
|
2136 |
+
"fewshot_split": "dev",
|
2137 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2138 |
+
"doc_to_target": "answer",
|
2139 |
+
"doc_to_choice": [
|
2140 |
+
"A",
|
2141 |
+
"B",
|
2142 |
+
"C",
|
2143 |
+
"D"
|
2144 |
+
],
|
2145 |
+
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
|
2146 |
+
"target_delimiter": " ",
|
2147 |
+
"fewshot_delimiter": "\n\n",
|
2148 |
+
"fewshot_config": {
|
2149 |
+
"sampler": "first_n"
|
2150 |
+
},
|
2151 |
+
"num_fewshot": 5,
|
2152 |
+
"metric_list": [
|
2153 |
+
{
|
2154 |
+
"metric": "acc",
|
2155 |
+
"aggregation": "mean",
|
2156 |
+
"higher_is_better": true
|
2157 |
+
}
|
2158 |
+
],
|
2159 |
+
"output_type": "multiple_choice",
|
2160 |
+
"repeats": 1,
|
2161 |
+
"should_decontaminate": false,
|
2162 |
+
"metadata": {
|
2163 |
+
"version": 0.0
|
2164 |
+
}
|
2165 |
+
},
|
2166 |
+
"mmlu_professional_law": {
|
2167 |
+
"task": "mmlu_professional_law",
|
2168 |
+
"task_alias": "professional_law",
|
2169 |
+
"group": "mmlu_humanities",
|
2170 |
+
"group_alias": "humanities",
|
2171 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2172 |
+
"dataset_name": "professional_law",
|
2173 |
+
"test_split": "test",
|
2174 |
+
"fewshot_split": "dev",
|
2175 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2176 |
+
"doc_to_target": "answer",
|
2177 |
+
"doc_to_choice": [
|
2178 |
+
"A",
|
2179 |
+
"B",
|
2180 |
+
"C",
|
2181 |
+
"D"
|
2182 |
+
],
|
2183 |
+
"description": "The following are multiple choice questions (with answers) about professional law.\n\n",
|
2184 |
+
"target_delimiter": " ",
|
2185 |
+
"fewshot_delimiter": "\n\n",
|
2186 |
+
"fewshot_config": {
|
2187 |
+
"sampler": "first_n"
|
2188 |
+
},
|
2189 |
+
"num_fewshot": 5,
|
2190 |
+
"metric_list": [
|
2191 |
+
{
|
2192 |
+
"metric": "acc",
|
2193 |
+
"aggregation": "mean",
|
2194 |
+
"higher_is_better": true
|
2195 |
+
}
|
2196 |
+
],
|
2197 |
+
"output_type": "multiple_choice",
|
2198 |
+
"repeats": 1,
|
2199 |
+
"should_decontaminate": false,
|
2200 |
+
"metadata": {
|
2201 |
+
"version": 0.0
|
2202 |
+
}
|
2203 |
+
},
|
2204 |
+
"mmlu_professional_medicine": {
|
2205 |
+
"task": "mmlu_professional_medicine",
|
2206 |
+
"task_alias": "professional_medicine",
|
2207 |
+
"group": "mmlu_other",
|
2208 |
+
"group_alias": "other",
|
2209 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2210 |
+
"dataset_name": "professional_medicine",
|
2211 |
+
"test_split": "test",
|
2212 |
+
"fewshot_split": "dev",
|
2213 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2214 |
+
"doc_to_target": "answer",
|
2215 |
+
"doc_to_choice": [
|
2216 |
+
"A",
|
2217 |
+
"B",
|
2218 |
+
"C",
|
2219 |
+
"D"
|
2220 |
+
],
|
2221 |
+
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
|
2222 |
+
"target_delimiter": " ",
|
2223 |
+
"fewshot_delimiter": "\n\n",
|
2224 |
+
"fewshot_config": {
|
2225 |
+
"sampler": "first_n"
|
2226 |
+
},
|
2227 |
+
"num_fewshot": 5,
|
2228 |
+
"metric_list": [
|
2229 |
+
{
|
2230 |
+
"metric": "acc",
|
2231 |
+
"aggregation": "mean",
|
2232 |
+
"higher_is_better": true
|
2233 |
+
}
|
2234 |
+
],
|
2235 |
+
"output_type": "multiple_choice",
|
2236 |
+
"repeats": 1,
|
2237 |
+
"should_decontaminate": false,
|
2238 |
+
"metadata": {
|
2239 |
+
"version": 0.0
|
2240 |
+
}
|
2241 |
+
},
|
2242 |
+
"mmlu_professional_psychology": {
|
2243 |
+
"task": "mmlu_professional_psychology",
|
2244 |
+
"task_alias": "professional_psychology",
|
2245 |
+
"group": "mmlu_social_sciences",
|
2246 |
+
"group_alias": "social_sciences",
|
2247 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2248 |
+
"dataset_name": "professional_psychology",
|
2249 |
+
"test_split": "test",
|
2250 |
+
"fewshot_split": "dev",
|
2251 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2252 |
+
"doc_to_target": "answer",
|
2253 |
+
"doc_to_choice": [
|
2254 |
+
"A",
|
2255 |
+
"B",
|
2256 |
+
"C",
|
2257 |
+
"D"
|
2258 |
+
],
|
2259 |
+
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
|
2260 |
+
"target_delimiter": " ",
|
2261 |
+
"fewshot_delimiter": "\n\n",
|
2262 |
+
"fewshot_config": {
|
2263 |
+
"sampler": "first_n"
|
2264 |
+
},
|
2265 |
+
"num_fewshot": 5,
|
2266 |
+
"metric_list": [
|
2267 |
+
{
|
2268 |
+
"metric": "acc",
|
2269 |
+
"aggregation": "mean",
|
2270 |
+
"higher_is_better": true
|
2271 |
+
}
|
2272 |
+
],
|
2273 |
+
"output_type": "multiple_choice",
|
2274 |
+
"repeats": 1,
|
2275 |
+
"should_decontaminate": false,
|
2276 |
+
"metadata": {
|
2277 |
+
"version": 0.0
|
2278 |
+
}
|
2279 |
+
},
|
2280 |
+
"mmlu_public_relations": {
|
2281 |
+
"task": "mmlu_public_relations",
|
2282 |
+
"task_alias": "public_relations",
|
2283 |
+
"group": "mmlu_social_sciences",
|
2284 |
+
"group_alias": "social_sciences",
|
2285 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2286 |
+
"dataset_name": "public_relations",
|
2287 |
+
"test_split": "test",
|
2288 |
+
"fewshot_split": "dev",
|
2289 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2290 |
+
"doc_to_target": "answer",
|
2291 |
+
"doc_to_choice": [
|
2292 |
+
"A",
|
2293 |
+
"B",
|
2294 |
+
"C",
|
2295 |
+
"D"
|
2296 |
+
],
|
2297 |
+
"description": "The following are multiple choice questions (with answers) about public relations.\n\n",
|
2298 |
+
"target_delimiter": " ",
|
2299 |
+
"fewshot_delimiter": "\n\n",
|
2300 |
+
"fewshot_config": {
|
2301 |
+
"sampler": "first_n"
|
2302 |
+
},
|
2303 |
+
"num_fewshot": 5,
|
2304 |
+
"metric_list": [
|
2305 |
+
{
|
2306 |
+
"metric": "acc",
|
2307 |
+
"aggregation": "mean",
|
2308 |
+
"higher_is_better": true
|
2309 |
+
}
|
2310 |
+
],
|
2311 |
+
"output_type": "multiple_choice",
|
2312 |
+
"repeats": 1,
|
2313 |
+
"should_decontaminate": false,
|
2314 |
+
"metadata": {
|
2315 |
+
"version": 0.0
|
2316 |
+
}
|
2317 |
+
},
|
2318 |
+
"mmlu_security_studies": {
|
2319 |
+
"task": "mmlu_security_studies",
|
2320 |
+
"task_alias": "security_studies",
|
2321 |
+
"group": "mmlu_social_sciences",
|
2322 |
+
"group_alias": "social_sciences",
|
2323 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2324 |
+
"dataset_name": "security_studies",
|
2325 |
+
"test_split": "test",
|
2326 |
+
"fewshot_split": "dev",
|
2327 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2328 |
+
"doc_to_target": "answer",
|
2329 |
+
"doc_to_choice": [
|
2330 |
+
"A",
|
2331 |
+
"B",
|
2332 |
+
"C",
|
2333 |
+
"D"
|
2334 |
+
],
|
2335 |
+
"description": "The following are multiple choice questions (with answers) about security studies.\n\n",
|
2336 |
+
"target_delimiter": " ",
|
2337 |
+
"fewshot_delimiter": "\n\n",
|
2338 |
+
"fewshot_config": {
|
2339 |
+
"sampler": "first_n"
|
2340 |
+
},
|
2341 |
+
"num_fewshot": 5,
|
2342 |
+
"metric_list": [
|
2343 |
+
{
|
2344 |
+
"metric": "acc",
|
2345 |
+
"aggregation": "mean",
|
2346 |
+
"higher_is_better": true
|
2347 |
+
}
|
2348 |
+
],
|
2349 |
+
"output_type": "multiple_choice",
|
2350 |
+
"repeats": 1,
|
2351 |
+
"should_decontaminate": false,
|
2352 |
+
"metadata": {
|
2353 |
+
"version": 0.0
|
2354 |
+
}
|
2355 |
+
},
|
2356 |
+
"mmlu_sociology": {
|
2357 |
+
"task": "mmlu_sociology",
|
2358 |
+
"task_alias": "sociology",
|
2359 |
+
"group": "mmlu_social_sciences",
|
2360 |
+
"group_alias": "social_sciences",
|
2361 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2362 |
+
"dataset_name": "sociology",
|
2363 |
+
"test_split": "test",
|
2364 |
+
"fewshot_split": "dev",
|
2365 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2366 |
+
"doc_to_target": "answer",
|
2367 |
+
"doc_to_choice": [
|
2368 |
+
"A",
|
2369 |
+
"B",
|
2370 |
+
"C",
|
2371 |
+
"D"
|
2372 |
+
],
|
2373 |
+
"description": "The following are multiple choice questions (with answers) about sociology.\n\n",
|
2374 |
+
"target_delimiter": " ",
|
2375 |
+
"fewshot_delimiter": "\n\n",
|
2376 |
+
"fewshot_config": {
|
2377 |
+
"sampler": "first_n"
|
2378 |
+
},
|
2379 |
+
"num_fewshot": 5,
|
2380 |
+
"metric_list": [
|
2381 |
+
{
|
2382 |
+
"metric": "acc",
|
2383 |
+
"aggregation": "mean",
|
2384 |
+
"higher_is_better": true
|
2385 |
+
}
|
2386 |
+
],
|
2387 |
+
"output_type": "multiple_choice",
|
2388 |
+
"repeats": 1,
|
2389 |
+
"should_decontaminate": false,
|
2390 |
+
"metadata": {
|
2391 |
+
"version": 0.0
|
2392 |
+
}
|
2393 |
+
},
|
2394 |
+
"mmlu_us_foreign_policy": {
|
2395 |
+
"task": "mmlu_us_foreign_policy",
|
2396 |
+
"task_alias": "us_foreign_policy",
|
2397 |
+
"group": "mmlu_social_sciences",
|
2398 |
+
"group_alias": "social_sciences",
|
2399 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2400 |
+
"dataset_name": "us_foreign_policy",
|
2401 |
+
"test_split": "test",
|
2402 |
+
"fewshot_split": "dev",
|
2403 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2404 |
+
"doc_to_target": "answer",
|
2405 |
+
"doc_to_choice": [
|
2406 |
+
"A",
|
2407 |
+
"B",
|
2408 |
+
"C",
|
2409 |
+
"D"
|
2410 |
+
],
|
2411 |
+
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
|
2412 |
+
"target_delimiter": " ",
|
2413 |
+
"fewshot_delimiter": "\n\n",
|
2414 |
+
"fewshot_config": {
|
2415 |
+
"sampler": "first_n"
|
2416 |
+
},
|
2417 |
+
"num_fewshot": 5,
|
2418 |
+
"metric_list": [
|
2419 |
+
{
|
2420 |
+
"metric": "acc",
|
2421 |
+
"aggregation": "mean",
|
2422 |
+
"higher_is_better": true
|
2423 |
+
}
|
2424 |
+
],
|
2425 |
+
"output_type": "multiple_choice",
|
2426 |
+
"repeats": 1,
|
2427 |
+
"should_decontaminate": false,
|
2428 |
+
"metadata": {
|
2429 |
+
"version": 0.0
|
2430 |
+
}
|
2431 |
+
},
|
2432 |
+
"mmlu_virology": {
|
2433 |
+
"task": "mmlu_virology",
|
2434 |
+
"task_alias": "virology",
|
2435 |
+
"group": "mmlu_other",
|
2436 |
+
"group_alias": "other",
|
2437 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2438 |
+
"dataset_name": "virology",
|
2439 |
+
"test_split": "test",
|
2440 |
+
"fewshot_split": "dev",
|
2441 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2442 |
+
"doc_to_target": "answer",
|
2443 |
+
"doc_to_choice": [
|
2444 |
+
"A",
|
2445 |
+
"B",
|
2446 |
+
"C",
|
2447 |
+
"D"
|
2448 |
+
],
|
2449 |
+
"description": "The following are multiple choice questions (with answers) about virology.\n\n",
|
2450 |
+
"target_delimiter": " ",
|
2451 |
+
"fewshot_delimiter": "\n\n",
|
2452 |
+
"fewshot_config": {
|
2453 |
+
"sampler": "first_n"
|
2454 |
+
},
|
2455 |
+
"num_fewshot": 5,
|
2456 |
+
"metric_list": [
|
2457 |
+
{
|
2458 |
+
"metric": "acc",
|
2459 |
+
"aggregation": "mean",
|
2460 |
+
"higher_is_better": true
|
2461 |
+
}
|
2462 |
+
],
|
2463 |
+
"output_type": "multiple_choice",
|
2464 |
+
"repeats": 1,
|
2465 |
+
"should_decontaminate": false,
|
2466 |
+
"metadata": {
|
2467 |
+
"version": 0.0
|
2468 |
+
}
|
2469 |
+
},
|
2470 |
+
"mmlu_world_religions": {
|
2471 |
+
"task": "mmlu_world_religions",
|
2472 |
+
"task_alias": "world_religions",
|
2473 |
+
"group": "mmlu_humanities",
|
2474 |
+
"group_alias": "humanities",
|
2475 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/mmlu_no_train",
|
2476 |
+
"dataset_name": "world_religions",
|
2477 |
+
"test_split": "test",
|
2478 |
+
"fewshot_split": "dev",
|
2479 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2480 |
+
"doc_to_target": "answer",
|
2481 |
+
"doc_to_choice": [
|
2482 |
+
"A",
|
2483 |
+
"B",
|
2484 |
+
"C",
|
2485 |
+
"D"
|
2486 |
+
],
|
2487 |
+
"description": "The following are multiple choice questions (with answers) about world religions.\n\n",
|
2488 |
+
"target_delimiter": " ",
|
2489 |
+
"fewshot_delimiter": "\n\n",
|
2490 |
+
"fewshot_config": {
|
2491 |
+
"sampler": "first_n"
|
2492 |
+
},
|
2493 |
+
"num_fewshot": 5,
|
2494 |
+
"metric_list": [
|
2495 |
+
{
|
2496 |
+
"metric": "acc",
|
2497 |
+
"aggregation": "mean",
|
2498 |
+
"higher_is_better": true
|
2499 |
+
}
|
2500 |
+
],
|
2501 |
+
"output_type": "multiple_choice",
|
2502 |
+
"repeats": 1,
|
2503 |
+
"should_decontaminate": false,
|
2504 |
+
"metadata": {
|
2505 |
+
"version": 0.0
|
2506 |
+
}
|
2507 |
+
}
|
2508 |
+
},
|
2509 |
+
"versions": {
|
2510 |
+
"mmlu": "N/A",
|
2511 |
+
"mmlu_abstract_algebra": 0.0,
|
2512 |
+
"mmlu_anatomy": 0.0,
|
2513 |
+
"mmlu_astronomy": 0.0,
|
2514 |
+
"mmlu_business_ethics": 0.0,
|
2515 |
+
"mmlu_clinical_knowledge": 0.0,
|
2516 |
+
"mmlu_college_biology": 0.0,
|
2517 |
+
"mmlu_college_chemistry": 0.0,
|
2518 |
+
"mmlu_college_computer_science": 0.0,
|
2519 |
+
"mmlu_college_mathematics": 0.0,
|
2520 |
+
"mmlu_college_medicine": 0.0,
|
2521 |
+
"mmlu_college_physics": 0.0,
|
2522 |
+
"mmlu_computer_security": 0.0,
|
2523 |
+
"mmlu_conceptual_physics": 0.0,
|
2524 |
+
"mmlu_econometrics": 0.0,
|
2525 |
+
"mmlu_electrical_engineering": 0.0,
|
2526 |
+
"mmlu_elementary_mathematics": 0.0,
|
2527 |
+
"mmlu_formal_logic": 0.0,
|
2528 |
+
"mmlu_global_facts": 0.0,
|
2529 |
+
"mmlu_high_school_biology": 0.0,
|
2530 |
+
"mmlu_high_school_chemistry": 0.0,
|
2531 |
+
"mmlu_high_school_computer_science": 0.0,
|
2532 |
+
"mmlu_high_school_european_history": 0.0,
|
2533 |
+
"mmlu_high_school_geography": 0.0,
|
2534 |
+
"mmlu_high_school_government_and_politics": 0.0,
|
2535 |
+
"mmlu_high_school_macroeconomics": 0.0,
|
2536 |
+
"mmlu_high_school_mathematics": 0.0,
|
2537 |
+
"mmlu_high_school_microeconomics": 0.0,
|
2538 |
+
"mmlu_high_school_physics": 0.0,
|
2539 |
+
"mmlu_high_school_psychology": 0.0,
|
2540 |
+
"mmlu_high_school_statistics": 0.0,
|
2541 |
+
"mmlu_high_school_us_history": 0.0,
|
2542 |
+
"mmlu_high_school_world_history": 0.0,
|
2543 |
+
"mmlu_human_aging": 0.0,
|
2544 |
+
"mmlu_human_sexuality": 0.0,
|
2545 |
+
"mmlu_humanities": "N/A",
|
2546 |
+
"mmlu_international_law": 0.0,
|
2547 |
+
"mmlu_jurisprudence": 0.0,
|
2548 |
+
"mmlu_logical_fallacies": 0.0,
|
2549 |
+
"mmlu_machine_learning": 0.0,
|
2550 |
+
"mmlu_management": 0.0,
|
2551 |
+
"mmlu_marketing": 0.0,
|
2552 |
+
"mmlu_medical_genetics": 0.0,
|
2553 |
+
"mmlu_miscellaneous": 0.0,
|
2554 |
+
"mmlu_moral_disputes": 0.0,
|
2555 |
+
"mmlu_moral_scenarios": 0.0,
|
2556 |
+
"mmlu_nutrition": 0.0,
|
2557 |
+
"mmlu_other": "N/A",
|
2558 |
+
"mmlu_philosophy": 0.0,
|
2559 |
+
"mmlu_prehistory": 0.0,
|
2560 |
+
"mmlu_professional_accounting": 0.0,
|
2561 |
+
"mmlu_professional_law": 0.0,
|
2562 |
+
"mmlu_professional_medicine": 0.0,
|
2563 |
+
"mmlu_professional_psychology": 0.0,
|
2564 |
+
"mmlu_public_relations": 0.0,
|
2565 |
+
"mmlu_security_studies": 0.0,
|
2566 |
+
"mmlu_social_sciences": "N/A",
|
2567 |
+
"mmlu_sociology": 0.0,
|
2568 |
+
"mmlu_stem": "N/A",
|
2569 |
+
"mmlu_us_foreign_policy": 0.0,
|
2570 |
+
"mmlu_virology": 0.0,
|
2571 |
+
"mmlu_world_religions": 0.0
|
2572 |
+
},
|
2573 |
+
"n-shot": {
|
2574 |
+
"mmlu": 0,
|
2575 |
+
"mmlu_abstract_algebra": 5,
|
2576 |
+
"mmlu_anatomy": 5,
|
2577 |
+
"mmlu_astronomy": 5,
|
2578 |
+
"mmlu_business_ethics": 5,
|
2579 |
+
"mmlu_clinical_knowledge": 5,
|
2580 |
+
"mmlu_college_biology": 5,
|
2581 |
+
"mmlu_college_chemistry": 5,
|
2582 |
+
"mmlu_college_computer_science": 5,
|
2583 |
+
"mmlu_college_mathematics": 5,
|
2584 |
+
"mmlu_college_medicine": 5,
|
2585 |
+
"mmlu_college_physics": 5,
|
2586 |
+
"mmlu_computer_security": 5,
|
2587 |
+
"mmlu_conceptual_physics": 5,
|
2588 |
+
"mmlu_econometrics": 5,
|
2589 |
+
"mmlu_electrical_engineering": 5,
|
2590 |
+
"mmlu_elementary_mathematics": 5,
|
2591 |
+
"mmlu_formal_logic": 5,
|
2592 |
+
"mmlu_global_facts": 5,
|
2593 |
+
"mmlu_high_school_biology": 5,
|
2594 |
+
"mmlu_high_school_chemistry": 5,
|
2595 |
+
"mmlu_high_school_computer_science": 5,
|
2596 |
+
"mmlu_high_school_european_history": 5,
|
2597 |
+
"mmlu_high_school_geography": 5,
|
2598 |
+
"mmlu_high_school_government_and_politics": 5,
|
2599 |
+
"mmlu_high_school_macroeconomics": 5,
|
2600 |
+
"mmlu_high_school_mathematics": 5,
|
2601 |
+
"mmlu_high_school_microeconomics": 5,
|
2602 |
+
"mmlu_high_school_physics": 5,
|
2603 |
+
"mmlu_high_school_psychology": 5,
|
2604 |
+
"mmlu_high_school_statistics": 5,
|
2605 |
+
"mmlu_high_school_us_history": 5,
|
2606 |
+
"mmlu_high_school_world_history": 5,
|
2607 |
+
"mmlu_human_aging": 5,
|
2608 |
+
"mmlu_human_sexuality": 5,
|
2609 |
+
"mmlu_humanities": 5,
|
2610 |
+
"mmlu_international_law": 5,
|
2611 |
+
"mmlu_jurisprudence": 5,
|
2612 |
+
"mmlu_logical_fallacies": 5,
|
2613 |
+
"mmlu_machine_learning": 5,
|
2614 |
+
"mmlu_management": 5,
|
2615 |
+
"mmlu_marketing": 5,
|
2616 |
+
"mmlu_medical_genetics": 5,
|
2617 |
+
"mmlu_miscellaneous": 5,
|
2618 |
+
"mmlu_moral_disputes": 5,
|
2619 |
+
"mmlu_moral_scenarios": 5,
|
2620 |
+
"mmlu_nutrition": 5,
|
2621 |
+
"mmlu_other": 5,
|
2622 |
+
"mmlu_philosophy": 5,
|
2623 |
+
"mmlu_prehistory": 5,
|
2624 |
+
"mmlu_professional_accounting": 5,
|
2625 |
+
"mmlu_professional_law": 5,
|
2626 |
+
"mmlu_professional_medicine": 5,
|
2627 |
+
"mmlu_professional_psychology": 5,
|
2628 |
+
"mmlu_public_relations": 5,
|
2629 |
+
"mmlu_security_studies": 5,
|
2630 |
+
"mmlu_social_sciences": 5,
|
2631 |
+
"mmlu_sociology": 5,
|
2632 |
+
"mmlu_stem": 5,
|
2633 |
+
"mmlu_us_foreign_policy": 5,
|
2634 |
+
"mmlu_virology": 5,
|
2635 |
+
"mmlu_world_religions": 5
|
2636 |
+
},
|
2637 |
+
"config": {
|
2638 |
+
"model": "vllm",
|
2639 |
+
"model_args": "pretrained=/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/Oasis,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.9,data_parallel_size=1,max_model_len=4096",
|
2640 |
+
"batch_size": "auto:128",
|
2641 |
+
"batch_sizes": [],
|
2642 |
+
"device": "cuda",
|
2643 |
+
"use_cache": "/lustre07/scratch/gagan30/arocr/cache/",
|
2644 |
+
"limit": null,
|
2645 |
+
"bootstrap_iters": 100000,
|
2646 |
+
"gen_kwargs": null
|
2647 |
+
},
|
2648 |
+
"git_hash": null
|
2649 |
+
}
|
results_truthfulqa.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"truthfulqa_mc2": {
|
4 |
+
"acc,none": 0.602896952995968,
|
5 |
+
"acc_stderr,none": 0.0158343852936674,
|
6 |
+
"alias": "truthfulqa_mc2"
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"configs": {
|
10 |
+
"truthfulqa_mc2": {
|
11 |
+
"task": "truthfulqa_mc2",
|
12 |
+
"group": [
|
13 |
+
"truthfulqa"
|
14 |
+
],
|
15 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/truthful_qa",
|
16 |
+
"dataset_name": "multiple_choice",
|
17 |
+
"validation_split": "validation",
|
18 |
+
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}",
|
19 |
+
"doc_to_target": 0,
|
20 |
+
"doc_to_choice": "{{mc2_targets.choices}}",
|
21 |
+
"process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"num_fewshot": 0,
|
26 |
+
"metric_list": [
|
27 |
+
{
|
28 |
+
"metric": "acc",
|
29 |
+
"aggregation": "mean",
|
30 |
+
"higher_is_better": true
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"output_type": "multiple_choice",
|
34 |
+
"repeats": 1,
|
35 |
+
"should_decontaminate": true,
|
36 |
+
"doc_to_decontamination_query": "question",
|
37 |
+
"metadata": {
|
38 |
+
"version": 2.0
|
39 |
+
}
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"versions": {
|
43 |
+
"truthfulqa_mc2": 2.0
|
44 |
+
},
|
45 |
+
"n-shot": {
|
46 |
+
"truthfulqa_mc2": 0
|
47 |
+
},
|
48 |
+
"config": {
|
49 |
+
"model": "vllm",
|
50 |
+
"model_args": "pretrained=/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/Oasis,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.9,data_parallel_size=1,max_model_len=4096",
|
51 |
+
"batch_size": "auto:128",
|
52 |
+
"batch_sizes": [],
|
53 |
+
"device": "cuda",
|
54 |
+
"use_cache": "/lustre07/scratch/gagan30/arocr/cache/",
|
55 |
+
"limit": null,
|
56 |
+
"bootstrap_iters": 100000,
|
57 |
+
"gen_kwargs": null
|
58 |
+
},
|
59 |
+
"git_hash": null
|
60 |
+
}
|
results_winogrande.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"winogrande": {
|
4 |
+
"acc,none": 0.7655880031570639,
|
5 |
+
"acc_stderr,none": 0.011906130106237992,
|
6 |
+
"alias": "winogrande"
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"configs": {
|
10 |
+
"winogrande": {
|
11 |
+
"task": "winogrande",
|
12 |
+
"dataset_path": "/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/eval/winogrande",
|
13 |
+
"dataset_name": "winogrande_xl",
|
14 |
+
"training_split": "train",
|
15 |
+
"validation_split": "validation",
|
16 |
+
"doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
17 |
+
"doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
18 |
+
"doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
19 |
+
"description": "",
|
20 |
+
"target_delimiter": " ",
|
21 |
+
"fewshot_delimiter": "\n\n",
|
22 |
+
"num_fewshot": 5,
|
23 |
+
"metric_list": [
|
24 |
+
{
|
25 |
+
"metric": "acc",
|
26 |
+
"aggregation": "mean",
|
27 |
+
"higher_is_better": true
|
28 |
+
}
|
29 |
+
],
|
30 |
+
"output_type": "multiple_choice",
|
31 |
+
"repeats": 1,
|
32 |
+
"should_decontaminate": true,
|
33 |
+
"doc_to_decontamination_query": "sentence",
|
34 |
+
"metadata": {
|
35 |
+
"version": 1.0
|
36 |
+
}
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"versions": {
|
40 |
+
"winogrande": 1.0
|
41 |
+
},
|
42 |
+
"n-shot": {
|
43 |
+
"winogrande": 5
|
44 |
+
},
|
45 |
+
"config": {
|
46 |
+
"model": "vllm",
|
47 |
+
"model_args": "pretrained=/lustre07/scratch/gagan30/arocr/meta-llama/self_rewarding_models/Oasis,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.9,data_parallel_size=1,max_model_len=4096",
|
48 |
+
"batch_size": "auto:128",
|
49 |
+
"batch_sizes": [],
|
50 |
+
"device": "cuda",
|
51 |
+
"use_cache": "/lustre07/scratch/gagan30/arocr/cache/",
|
52 |
+
"limit": null,
|
53 |
+
"bootstrap_iters": 100000,
|
54 |
+
"gen_kwargs": null
|
55 |
+
},
|
56 |
+
"git_hash": null
|
57 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<s>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": {
|
22 |
+
"content": "<s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"unk_token": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [
|
31 |
+
"<unk>",
|
32 |
+
"<s>",
|
33 |
+
"</s>"
|
34 |
+
],
|
35 |
+
"bos_token": "<s>",
|
36 |
+
"clean_up_tokenization_spaces": false,
|
37 |
+
"eos_token": "</s>",
|
38 |
+
"legacy": true,
|
39 |
+
"max_length": null,
|
40 |
+
"model_max_length": 255,
|
41 |
+
"pad_to_multiple_of": null,
|
42 |
+
"pad_token": "<s>",
|
43 |
+
"pad_token_type_id": 0,
|
44 |
+
"padding_side": "left",
|
45 |
+
"sp_model_kwargs": {},
|
46 |
+
"spaces_between_special_tokens": false,
|
47 |
+
"tokenizer_class": "LlamaTokenizer",
|
48 |
+
"unk_token": "<unk>",
|
49 |
+
"use_default_system_prompt": true
|
50 |
+
}
|