Update README.md
Browse files
README.md
CHANGED
@@ -1,200 +1,89 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
|
|
6 |
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
|
10 |
|
11 |
-
|
|
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
-
|
|
|
18 |
|
|
|
|
|
19 |
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
- **Shared by [optional]:** [More Information Needed]
|
24 |
-
- **Model type:** [More Information Needed]
|
25 |
-
- **Language(s) (NLP):** [More Information Needed]
|
26 |
-
- **License:** [More Information Needed]
|
27 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
28 |
|
29 |
-
###
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
50 |
-
|
51 |
-
[More Information Needed]
|
52 |
-
|
53 |
-
### Out-of-Scope Use
|
54 |
-
|
55 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
56 |
-
|
57 |
-
[More Information Needed]
|
58 |
-
|
59 |
-
## Bias, Risks, and Limitations
|
60 |
-
|
61 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
62 |
-
|
63 |
-
[More Information Needed]
|
64 |
-
|
65 |
-
### Recommendations
|
66 |
-
|
67 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
68 |
-
|
69 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
70 |
-
|
71 |
-
## How to Get Started with the Model
|
72 |
-
|
73 |
-
Use the code below to get started with the model.
|
74 |
-
|
75 |
-
[More Information Needed]
|
76 |
-
|
77 |
-
## Training Details
|
78 |
-
|
79 |
-
### Training Data
|
80 |
-
|
81 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
82 |
-
|
83 |
-
[More Information Needed]
|
84 |
-
|
85 |
-
### Training Procedure
|
86 |
-
|
87 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
88 |
-
|
89 |
-
#### Preprocessing [optional]
|
90 |
-
|
91 |
-
[More Information Needed]
|
92 |
-
|
93 |
-
|
94 |
-
#### Training Hyperparameters
|
95 |
-
|
96 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
97 |
-
|
98 |
-
#### Speeds, Sizes, Times [optional]
|
99 |
-
|
100 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
## Evaluation
|
105 |
-
|
106 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
107 |
-
|
108 |
-
### Testing Data, Factors & Metrics
|
109 |
-
|
110 |
-
#### Testing Data
|
111 |
-
|
112 |
-
<!-- This should link to a Dataset Card if possible. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
#### Factors
|
117 |
-
|
118 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
#### Metrics
|
123 |
-
|
124 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
### Results
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Summary
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Model Examination [optional]
|
137 |
-
|
138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
## Environmental Impact
|
143 |
-
|
144 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
145 |
-
|
146 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
-
|
148 |
-
- **Hardware Type:** [More Information Needed]
|
149 |
-
- **Hours used:** [More Information Needed]
|
150 |
-
- **Cloud Provider:** [More Information Needed]
|
151 |
-
- **Compute Region:** [More Information Needed]
|
152 |
-
- **Carbon Emitted:** [More Information Needed]
|
153 |
-
|
154 |
-
## Technical Specifications [optional]
|
155 |
-
|
156 |
-
### Model Architecture and Objective
|
157 |
-
|
158 |
-
[More Information Needed]
|
159 |
-
|
160 |
-
### Compute Infrastructure
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
#### Hardware
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Software
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
## Citation [optional]
|
173 |
-
|
174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
175 |
-
|
176 |
-
**BibTeX:**
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
**APA:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
## Glossary [optional]
|
185 |
-
|
186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## More Information [optional]
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Model Card Authors [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Contact
|
199 |
-
|
200 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- avaliev/chat_doctor
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
tags:
|
10 |
+
- medical
|
11 |
+
- biology
|
12 |
+
- conversetional
|
13 |
+
- qween
|
14 |
+
- doctor
|
15 |
---
|
16 |
+
To generate text using the `AutoTokenizer` and `AutoModelForCausalLM` from the Hugging Face Transformers library, you can follow these steps. First, ensure you have the necessary libraries installed:
|
17 |
|
18 |
+
```bash
|
19 |
+
pip install transformers torch
|
20 |
+
```
|
21 |
|
22 |
+
Then, use the following Python code to load the model and generate text:
|
23 |
|
24 |
+
```python
|
25 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
26 |
|
27 |
+
# Load the tokenizer and model
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
|
29 |
+
model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")
|
30 |
|
31 |
+
# Define the input prompt
|
32 |
+
input_text = "Hello, how are you doing today?"
|
33 |
|
34 |
+
# Encode the input text
|
35 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
36 |
|
37 |
+
# Generate text
|
38 |
+
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)
|
39 |
|
40 |
+
# Decode the generated text
|
41 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
42 |
|
43 |
+
print(generated_text)
|
44 |
+
```
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
### Explanation:
|
47 |
|
48 |
+
1. **Load the Tokenizer and Model**:
|
49 |
+
```python
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")
|
52 |
+
```
|
53 |
+
This code loads the tokenizer and model from the specified Hugging Face model repository.
|
54 |
|
55 |
+
2. **Define the Input Prompt**:
|
56 |
+
```python
|
57 |
+
input_text = "Hello, how are you doing today?"
|
58 |
+
```
|
59 |
+
This is the text prompt that you want the model to complete or generate text from.
|
60 |
|
61 |
+
3. **Encode the Input Text**:
|
62 |
+
```python
|
63 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
64 |
+
```
|
65 |
+
The `tokenizer.encode` method converts the input text into token IDs that the model can process. The `return_tensors="pt"` argument specifies that the output should be in the form of PyTorch tensors.
|
66 |
|
67 |
+
4. **Generate Text**:
|
68 |
+
```python
|
69 |
+
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)
|
70 |
+
```
|
71 |
+
The `model.generate` method generates text based on the input token IDs.
|
72 |
+
- `max_length=50` specifies the maximum length of the generated text.
|
73 |
+
- `num_return_sequences=1` specifies the number of generated text sequences to return.
|
74 |
+
- `do_sample=True` indicates that sampling should be used to generate text, which introduces some randomness and can produce more varied text.
|
75 |
|
76 |
+
5. **Decode the Generated Text**:
|
77 |
+
```python
|
78 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
79 |
+
```
|
80 |
+
The `tokenizer.decode` method converts the generated token IDs back into human-readable text. The `skip_special_tokens=True` argument ensures that special tokens (like `<|endoftext|>`) are not included in the output.
|
81 |
|
82 |
+
6. **Print the Generated Text**:
|
83 |
+
```python
|
84 |
+
print(generated_text)
|
85 |
+
```
|
86 |
|
87 |
+
This prints the generated text to the console.
|
88 |
|
89 |
+
You can modify the input prompt and the parameters of the `model.generate` method to suit your needs, such as adjusting `max_length` for longer or shorter text generation, or changing `num_return_sequences` to generate multiple variations.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|