ar08 commited on
Commit
56d9712
1 Parent(s): 1cf3de5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -180
README.md CHANGED
@@ -1,200 +1,89 @@
1
  ---
2
- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
- # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
- {}
 
 
 
 
 
 
 
 
 
 
5
  ---
 
6
 
7
- # Model Card for Model ID
 
 
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
10
 
11
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
 
12
 
13
- ## Model Details
 
 
14
 
15
- ### Model Description
 
16
 
17
- <!-- Provide a longer summary of what this model is. -->
 
18
 
 
 
19
 
 
 
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
- ### Model Sources [optional]
30
 
31
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
32
 
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
 
 
36
 
37
- ## Uses
 
 
 
 
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
40
 
41
- ### Direct Use
 
 
 
 
42
 
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
44
 
45
- [More Information Needed]
46
 
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ datasets:
4
+ - avaliev/chat_doctor
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - medical
11
+ - biology
12
+ - conversetional
13
+ - qween
14
+ - doctor
15
  ---
16
+ To generate text using the `AutoTokenizer` and `AutoModelForCausalLM` from the Hugging Face Transformers library, you can follow these steps. First, ensure you have the necessary libraries installed:
17
 
18
+ ```bash
19
+ pip install transformers torch
20
+ ```
21
 
22
+ Then, use the following Python code to load the model and generate text:
23
 
24
+ ```python
25
+ from transformers import AutoTokenizer, AutoModelForCausalLM
26
 
27
+ # Load the tokenizer and model
28
+ tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
29
+ model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")
30
 
31
+ # Define the input prompt
32
+ input_text = "Hello, how are you doing today?"
33
 
34
+ # Encode the input text
35
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
36
 
37
+ # Generate text
38
+ output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)
39
 
40
+ # Decode the generated text
41
+ generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
42
 
43
+ print(generated_text)
44
+ ```
 
 
 
 
 
45
 
46
+ ### Explanation:
47
 
48
+ 1. **Load the Tokenizer and Model**:
49
+ ```python
50
+ tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
51
+ model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")
52
+ ```
53
+ This code loads the tokenizer and model from the specified Hugging Face model repository.
54
 
55
+ 2. **Define the Input Prompt**:
56
+ ```python
57
+ input_text = "Hello, how are you doing today?"
58
+ ```
59
+ This is the text prompt that you want the model to complete or generate text from.
60
 
61
+ 3. **Encode the Input Text**:
62
+ ```python
63
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
64
+ ```
65
+ The `tokenizer.encode` method converts the input text into token IDs that the model can process. The `return_tensors="pt"` argument specifies that the output should be in the form of PyTorch tensors.
66
 
67
+ 4. **Generate Text**:
68
+ ```python
69
+ output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)
70
+ ```
71
+ The `model.generate` method generates text based on the input token IDs.
72
+ - `max_length=50` specifies the maximum length of the generated text.
73
+ - `num_return_sequences=1` specifies the number of generated text sequences to return.
74
+ - `do_sample=True` indicates that sampling should be used to generate text, which introduces some randomness and can produce more varied text.
75
 
76
+ 5. **Decode the Generated Text**:
77
+ ```python
78
+ generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
79
+ ```
80
+ The `tokenizer.decode` method converts the generated token IDs back into human-readable text. The `skip_special_tokens=True` argument ensures that special tokens (like `<|endoftext|>`) are not included in the output.
81
 
82
+ 6. **Print the Generated Text**:
83
+ ```python
84
+ print(generated_text)
85
+ ```
86
 
87
+ This prints the generated text to the console.
88
 
89
+ You can modify the input prompt and the parameters of the `model.generate` method to suit your needs, such as adjusting `max_length` for longer or shorter text generation, or changing `num_return_sequences` to generate multiple variations.