XD-MU commited on
Commit
c74801e
·
verified ·
1 Parent(s): 3a35286

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -3
README.md CHANGED
@@ -1,3 +1,52 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: XD-MU/ScriptAgent
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:XD-MU/ScriptAgent
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+
12
+ # ScriptAgent: Dialogue-to-Shooting-Script Generation Model
13
+
14
+ This model is a fine-tuned adapter (LoRA) on top of the `XD-MU/ScriptAgent` base model, designed to **generate detailed shooting scripts from dialogue inputs**. It is trained to transform conversational text into structured screenplay formats suitable for film or video production.
15
+
16
+ The model is compatible with [ms-swift](https://github.com/modelscope/swift) and supports efficient inference via the **vLLM backend**.
17
+
18
+ > 💡 Note: This repository contains a **PEFT adapter** (e.g., LoRA). To use it, you must merge it with the original base model or load it via `ms-swift`.
19
+
20
+ ## ▶️ Inference with ms-swift (vLLM Backend)
21
+
22
+ To generate shooting scripts from dialogue inputs, use the following command with **ms-swift**:
23
+
24
+ You can find **DialoguePrompts** here: https://huggingface.co/datasets/XD-MU/DialoguePrompts
25
+ ```bash
26
+ import os
27
+ from huggingface_hub import snapshot_download
28
+ from swift.llm import PtEngine, RequestConfig, InferRequest
29
+ os.environ['CUDA_VISIBLE_DEVICES'] = '0'
30
+
31
+ model_name = "XD-MU/ScriptAgent"
32
+ local_path = "./models/ScriptAgent"
33
+
34
+ snapshot_download(
35
+ repo_id=model_name,
36
+ local_dir=local_path,
37
+ local_dir_use_symlinks=False,
38
+ resume_download=True
39
+ )
40
+
41
+ engine = PtEngine(local_path, max_batch_size=1)
42
+ request_config = RequestConfig(max_tokens=8192, temperature=0.7)
43
+
44
+ infer_request = InferRequest(messages=[
45
+ {"role": "user", "content": "Your Dialogue"}
46
+ ])
47
+ response = engine.infer([infer_request], request_config)[0]
48
+
49
+ print(response.choices[0].message.content)
50
+ ```
51
+
52
+