add example usage
Browse files
README.md
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
## usage :
|
8 |
+
```python
|
9 |
+
import os
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
13 |
+
|
14 |
+
# set HF_TOKEN in terminal as export HF_TOKEN=hf_***
|
15 |
+
auth_token = os.environ.get("HF_TOKEN", True)
|
16 |
+
|
17 |
+
model_name = "Writer/camel-5b"
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
20 |
+
model_name, use_auth_token=auth_token
|
21 |
+
)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_name,
|
24 |
+
device_map="auto",
|
25 |
+
torch_dtype=torch.float16,
|
26 |
+
use_auth_token=auth_token,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
instruction = "Describe a futuristic device that revolutionizes space travel."
|
31 |
+
|
32 |
+
|
33 |
+
PROMPT_DICT = {
|
34 |
+
"prompt_input": (
|
35 |
+
"Below is an instruction that describes a task, paired with an input that provides further context. "
|
36 |
+
"Write a response that appropriately completes the request\n\n"
|
37 |
+
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
|
38 |
+
),
|
39 |
+
"prompt_no_input": (
|
40 |
+
"Below is an instruction that describes a task. "
|
41 |
+
"Write a response that appropriately completes the request.\n\n"
|
42 |
+
"### Instruction:\n{instruction}\n\n### Response:"
|
43 |
+
),
|
44 |
+
}
|
45 |
+
|
46 |
+
text = (
|
47 |
+
PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
|
48 |
+
if not input
|
49 |
+
else PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
|
50 |
+
)
|
51 |
+
|
52 |
+
model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
53 |
+
output_ids = model.generate(
|
54 |
+
**model_inputs,
|
55 |
+
max_length=100,
|
56 |
+
)
|
57 |
+
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
58 |
+
clean_output = output_text.split("### Response:")[1].strip()
|
59 |
+
|
60 |
+
print(clean_output)
|
61 |
+
|
62 |
+
```
|