Wonder-Griffin
commited on
Commit
•
d68a5c3
1
Parent(s):
23877d3
Create DLME.py
Browse files
DLME.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn, optim
|
5 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR
|
6 |
+
from transformers import Trainer, TrainingArguments, PreTrainedModel, PretrainedConfig
|
7 |
+
from datasets import load_dataset, load_metric
|
8 |
+
from transformers import BertTokenizerFast
|
9 |
+
from torchvision.transforms import Compose, Resize, ToTensor
|
10 |
+
import os
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import seaborn as sns
|
13 |
+
import logging
|
14 |
+
|
15 |
+
# Set up logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# Custom ZeusModel
|
20 |
+
class ZeusModel(PreTrainedModel):
|
21 |
+
config_class = PretrainedConfig
|
22 |
+
|
23 |
+
def __init__(self, config):
|
24 |
+
super().__init__(config)
|
25 |
+
self.hybrid_embedding = HybridEmbeddingLayer(config.vocab_size, config.embed_dim, config.image_dim, config.audio_dim)
|
26 |
+
self.quantum_attention = QuantumAttentionLayer(config.embed_dim)
|
27 |
+
self.dnp_layer = DNP(config.embed_dim, config.embed_dim)
|
28 |
+
self.recursive_reflection = RecursiveSelfReflectionLayer(config.embed_dim, config.reflection_dim)
|
29 |
+
self.mohe_layer = MoHELayer(config.embed_dim, config.num_experts)
|
30 |
+
self.output_layer = nn.Linear(config.embed_dim, config.vocab_size)
|
31 |
+
self._init_weights()
|
32 |
+
|
33 |
+
def forward(self, text_input, image_input=None, audio_input=None):
|
34 |
+
x = self.hybrid_embedding(text_input, image_input, audio_input)
|
35 |
+
attention_output = self.quantum_attention(x)
|
36 |
+
x = self.dnp_layer(attention_output)
|
37 |
+
x = self.recursive_reflection(x)
|
38 |
+
x = self.mohe_layer(x)
|
39 |
+
output = self.output_layer(x)
|
40 |
+
return output, attention_output
|
41 |
+
|
42 |
+
def _init_weights(self, module=None):
|
43 |
+
if module is None:
|
44 |
+
module = self
|
45 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Embedding):
|
46 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
47 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
48 |
+
nn.init.zeros_(module.bias)
|
49 |
+
if isinstance(module, nn.LayerNorm):
|
50 |
+
nn.init.ones_(module.weight)
|
51 |
+
nn.init.zeros_(module.bias)
|
52 |
+
for submodule in module.children():
|
53 |
+
self._init_weights(submodule)
|
54 |
+
|
55 |
+
# Configuration class for ZeusModel
|
56 |
+
class ZeusConfig(PretrainedConfig):
|
57 |
+
def __init__(self, vocab_size=50000, embed_dim=768, image_dim=256, audio_dim=128, reflection_dim=512, num_experts=4, initializer_range=0.02, **kwargs):
|
58 |
+
super().__init__(**kwargs)
|
59 |
+
self.vocab_size = vocab_size
|
60 |
+
self.embed_dim = embed_dim
|
61 |
+
self.image_dim = image_dim
|
62 |
+
self.audio_dim = audio_dim
|
63 |
+
self.reflection_dim = reflection_dim
|
64 |
+
self.num_experts = num_experts
|
65 |
+
self.initializer_range = initializer_range
|
66 |
+
|
67 |
+
# Hybrid Embedding Layer
|
68 |
+
class HybridEmbeddingLayer(nn.Module):
|
69 |
+
def __init__(self, vocab_size, embed_dim, image_dim, audio_dim):
|
70 |
+
super(HybridEmbeddingLayer, self).__init__()
|
71 |
+
self.text_embedding = nn.Embedding(vocab_size, embed_dim)
|
72 |
+
self.image_feature_extractor = nn.Conv2d(3, image_dim, kernel_size=3, stride=2)
|
73 |
+
self.audio_feature_extractor = nn.Conv1d(1, audio_dim, kernel_size=3, stride=2)
|
74 |
+
|
75 |
+
def forward(self, text_input, image_input=None, audio_input=None):
|
76 |
+
text_emb = self.text_embedding(text_input)
|
77 |
+
if image_input is not None:
|
78 |
+
image_emb = self.image_feature_extractor(image_input)
|
79 |
+
image_emb = image_emb.view(image_emb.size(0), -1) # Flatten
|
80 |
+
if audio_input is not None:
|
81 |
+
audio_emb = self.audio_feature_extractor(audio_input)
|
82 |
+
audio_emb = audio_emb.view(audio_emb.size(0), -1) # Flatten
|
83 |
+
combined_emb = text_emb + image_emb + audio_emb # Hybrid combination
|
84 |
+
return combined_emb
|
85 |
+
|
86 |
+
# Quantum-Inspired Attention Layer
|
87 |
+
class QuantumAttentionLayer(nn.Module):
|
88 |
+
def __init__(self, embed_dim):
|
89 |
+
super(QuantumAttentionLayer, self).__init__()
|
90 |
+
self.attention_weights = nn.Parameter(torch.randn(embed_dim, embed_dim))
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
# Quantum-inspired probabilistic attention
|
94 |
+
attention_probs = F.softmax(torch.matmul(x, self.attention_weights), dim=-1)
|
95 |
+
attention_output = torch.matmul(attention_probs, x)
|
96 |
+
return attention_output
|
97 |
+
|
98 |
+
# Differentiable Neural Plasticity Layer
|
99 |
+
class DNP(nn.Module):
|
100 |
+
def __init__(self, input_dim, output_dim):
|
101 |
+
super(DNP, self).__init__()
|
102 |
+
self.fc = nn.Linear(input_dim, output_dim)
|
103 |
+
self.plasticity_weights = nn.Parameter(torch.randn(output_dim))
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
out = self.fc(x)
|
107 |
+
plasticity_effect = torch.mul(out, self.plasticity_weights)
|
108 |
+
return out + plasticity_effect
|
109 |
+
|
110 |
+
# Custom Recursive Self-Reflection Layer
|
111 |
+
class RecursiveSelfReflectionLayer(nn.Module):
|
112 |
+
def __init__(self, input_dim, reflection_dim):
|
113 |
+
super(RecursiveSelfReflectionLayer, self).__init__()
|
114 |
+
self.reflection_layer = nn.Linear(input_dim, reflection_dim)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
reflection_output = F.relu(self.reflection_layer(x))
|
118 |
+
self_adjusted_output = x + reflection_output # Recursive adjustment
|
119 |
+
return self_adjusted_output
|
120 |
+
|
121 |
+
# MoHE Layer
|
122 |
+
class MoHELayer(nn.Module):
|
123 |
+
def __init__(self, embed_dim, num_experts):
|
124 |
+
super(MoHELayer, self).__init__()
|
125 |
+
self.experts = nn.ModuleList([nn.Linear(embed_dim, embed_dim) for _ in range(num_experts)])
|
126 |
+
self.gate = nn.Linear(embed_dim, num_experts)
|
127 |
+
|
128 |
+
def forward(self, x):
|
129 |
+
gate_output = F.softmax(self.gate(x), dim=-1)
|
130 |
+
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
|
131 |
+
output = torch.einsum("be,bec->bc", gate_output, expert_outputs)
|
132 |
+
return output
|
133 |
+
|
134 |
+
# Complete Unique Model
|
135 |
+
class ZeusModel(nn.Module):
|
136 |
+
def __init__(self, vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts):
|
137 |
+
super(ZeusModel, self).__init__()
|
138 |
+
self.hybrid_embedding = HybridEmbeddingLayer(vocab_size, embed_dim, image_dim, audio_dim)
|
139 |
+
self.quantum_attention = QuantumAttentionLayer(embed_dim)
|
140 |
+
self.dnp_layer = DNP(embed_dim, embed_dim)
|
141 |
+
self.recursive_reflection = RecursiveSelfReflectionLayer(embed_dim, reflection_dim)
|
142 |
+
self.mohe_layer = MoHELayer(embed_dim, num_experts)
|
143 |
+
self.output_layer = nn.Linear(embed_dim, vocab_size)
|
144 |
+
|
145 |
+
def forward_with_memory(self, text_input, image_input, audio_input, symbolic_input):
|
146 |
+
x = self.hybrid_embedding(text_input, image_input, audio_input)
|
147 |
+
x, memory_state = self.memory_augmented_layer(x, memory_state)
|
148 |
+
x = self.quantum_attention(x)
|
149 |
+
x = self.dnp_layer(x)
|
150 |
+
x = self.recursive_reflection(x)
|
151 |
+
x = self.mohe_layer(x)
|
152 |
+
output = self.output_layer(x)
|
153 |
+
return output
|
154 |
+
|
155 |
+
# Parameters
|
156 |
+
vocab_size = 50000
|
157 |
+
embed_dim = 768
|
158 |
+
image_dim = 256
|
159 |
+
audio_dim = 128
|
160 |
+
num_heads = 12
|
161 |
+
reflection_dim = 512
|
162 |
+
num_experts = 4
|
163 |
+
|
164 |
+
model = ZeusModel(vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts)
|